首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hansen BB  Aanes R  Herfindal I  Kohler J  Saether BE 《Ecology》2011,92(10):1917-1923
Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.  相似文献   

2.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

3.
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments.  相似文献   

4.
For most consumer species, winter represents a period of harsh food conditions in addition to the physiological strain that results from the low ambient temperatures. In size-structured populations, larger-bodied individuals do better during winter as they have larger energy reserves to buffer starvation periods. In contrast, smaller-bodied individuals do better under growing conditions, as they have lower maintenance costs. We study how the interplay between size-dependent life-history processes and seasonal changes in temperature and food availability shape the long-term dynamics of a size-structured consumer population and its unstructured resource. We show that the size dependence of maintenance requirements translates into a minimum body size that is needed for surviving starvation when consumers can adapt only to a limited extent to the low food densities in winter. This size threshold can lead to population extinction because adult individuals suffer only a little during winter and hence produce large numbers of offspring. Due to population feedback on the resource and intense intra-cohort competition, newborn consumers then fail to reach the size threshold for survival. Under these conditions, small numbers of individuals can survive, increase in density, and build up a population, which will subsequently go extinct due to its feedback on the resource. High juvenile mortality may prevent this ecological suicide from occurring, as it releases resource competition among newborns and speeds up their growth. In size-structured populations, annual fluctuations in temperature and food availability may thus lead to a conflict between individual fitness and population persistence.  相似文献   

5.
When reproduction competes with the amount of resources available for survival during an unpredictable nonbreeding season, individuals should adopt a risk-sensitive regulation of their reproductive allocation. We tested this hypothesis on female reindeer (Rangifer tarandus), which face a trade-off between reproduction and acquisition of body reserves during spring and summer, with autumn body mass functioning as insurance against stochastic winter climatic severity. The study was conducted in a population consisting of two herds: one that received supplementary winter feeding for four years while the other utilized natural pastures. The females receiving additional forage allocated more to their calves. Experimental translocation of females between the herds was conducted to simulate two contrasting rapid alterations of winter conditions. When females receiving supplementary feeding were moved to natural pastures, they promptly reduced their reproductive allocation the following summer. However, when winter conditions were improved, females were reluctant to increase their reproductive allocation. This asymmetric response to improved vs. reduced winter conditions is consistent with a risk-averse adjustment in reproductive allocation. The ability of individuals to track their environment and the concordant risk-sensitive adjustment of reproductive allocation may render subarctic reindeer more resilient to climate change than previously supposed.  相似文献   

6.
Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by >3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends.  相似文献   

7.
Contemporary efforts to protect biological diversity recognize the importance of sustaining traditional human livelihoods, particularly uses of the land that are compatible with intact landscapes and ecologically complete food webs. However, these efforts often confront conflicting goals. For example, conserving native predators may harm pastoralist economies because predators consume domestic livestock that sustain people. This potential conflict must be reconciled by policy, but such reconciliation requires a firm understanding of the effects of predators on the prey used by people. We used a long-term, large-scale database and Bayesian models to estimate the impacts of lynx (Lynx lynx), wolverine (Gulo gulo), and brown bear (Ursus arctos) on harvest of semi-domesticated reindeer (Rangifer tarandus) by Sami pastoralists in Sweden. The average annual harvest of reindeer averaged 25% of the population (95% credible interval = 19, 31). Annual harvest declined by 96.6 (31, 155) reindeer for each lynx family group (the surveyed segment of the lynx population) in a management unit and by 94.3 (20, 160) for each wolverine reproduction (the surveyed segment of the wolverine population). We failed to detect effects of predation by brown bear. The mechanism for effects of predation on harvest was reduced population growth rate. The rate of increase of reindeer populations declined with increasing abundance of lynx and wolverine. The density of reindeer, latitude, and weather indexed by the North Atlantic Oscillation also influenced reindeer population growth rate. We conclude that there is a biological basis for compensating the Sámi reindeer herders for predation on reindeer.  相似文献   

8.
Birth-pulse populations are often characterized with discrete-time models, that use a single function to relate the post-breeding population size to the post-breeding size of the previous year. Recently, models of seasonal density dependence have been constructed that emphasize interactions during shorter time periods also. Here, we study two very simple forms of density-dependent mortality, that lead to Ricker and Beverton-Holt type population dynamics when viewed over the whole year. We explore the consequences of harvest timing to equilibrium population sizes under such density dependence. Whether or not individual mortality compensates for the harvested quota, the timing of harvesting has a strong impact on the sustainability of a harvesting quota. Further, we show that careless discretization of a continuous mortality scheme may seriously underestimate the reduction in population size caused by hunting and overestimate the sustainable yield. We also introduce the concept of the demographic value of an individual, which reflects the expected contribution to population size over time in the presence of density dependence. Finally, we discuss the possibility of calculating demographic values as means of optimizing harvest strategies. Here, a Pareto optimal harvest strategy will minimize the loss of demographic value from the population for a given yield.  相似文献   

9.
Johnson DW 《Ecology》2006,87(5):1179-1188
Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether increased habitat complexity leads to an increase or a decrease in the strength of density-dependent mortality may depend on how specific predatory responses (e.g., functional or aggregative) are altered by habitat complexity. Overall, the findings of this study suggest that rates of demographic density dependence and the resulting dynamics of local populations may largely depend upon attributes of the local habitat.  相似文献   

10.
Wilson S  LaDeau SL  Tøttrup AP  Marra PP 《Ecology》2011,92(9):1789-1798
Geographic variation in the population dynamics of a species can result from regional variability in climate and how it affects reproduction and survival. Identifying such effects for migratory birds requires the integration of population models with knowledge of migratory connectivity between breeding and nonbreeding areas. We used Bayesian hierarchical models with 26 years of Breeding Bird Survey data (1982-2007) to investigate the impacts of breeding- and nonbreeding-season climate on abundance of American Redstarts (Setophaga ruticilla) across the species range. We focused on 15 populations defined by Bird Conservation Regions, and we included variation across routes and observers as well as temporal trends and climate effects. American Redstart populations that breed in eastern North America showed increased abundance following winters with higher plant productivity in the Caribbean where they are expected to overwinter. In contrast, western breeding populations showed little response to conditions in their expected wintering areas in west Mexico, perhaps reflecting lower migratory connectivity or differential effects of winter rainfall on individuals across the species range. Unlike the case with winter climate, we found few effects of temperature prior to arrival in spring (March-April) or during the nesting period (May-June) on abundance the following year. Eight populations showed significant changes in abundance, with the steepest declines in the Atlantic Northern Forest (-3.4%/yr) and the greatest increases in the Prairie Hardwood Transition (4%/yr). This study emphasizes how the effects of climate on populations of migratory birds are context dependent and can vary depending on geographic location and the period of the annual cycle. Such knowledge is essential for predicting regional variation in how populations of a species might vary in their response to climate change.  相似文献   

11.
Abstract:  The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (λ) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon ( Oncorhynchus tshawytscha ) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean λ values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery.  相似文献   

12.
Brook BW  Bradshaw CJ 《Ecology》2006,87(6):1445-1451
Population limitation is a fundamental tenet of ecology, but the relative roles of exogenous and endogenous mechanisms remain unquantified for most species. Here we used multi-model inference (MMI), a form of model averaging, based on information theory (Akaike's Information Criterion) to evaluate the relative strength of evidence for density-dependent and density-independent population dynamical models in long-term abundance time series of 1198 species. We also compared the MMI results to more classic methods for detecting density dependence: Neyman-Pearson hypothesis-testing and best-model selection using the Bayesian Information Criterion or cross-validation. Using MMI on our large database, we show that density dependence is a pervasive feature of population dynamics (median MMI support for density dependence = 74.7-92.2%), and that this holds across widely different taxa. The weight of evidence for density dependence varied among species but increased consistently, with the number of generations monitored. Best-model selection methods yielded similar results to MMI (a density-dependent model was favored in 66.2-93.9% of species time series), while the hypothesis-testing methods detected density dependence less frequently (32.6-49.8%). There were no obvious differences in the prevalence of density dependence across major taxonomic groups under any of the statistical methods used. These results underscore the value of using multiple modes of analysis to quantify the relative empirical support for a set of working hypotheses that encompass a range of realistic population dynamical behaviors.  相似文献   

13.
Johnson DW 《Ecology》2006,87(2):319-325
Experimental manipulation of population density has frequently been used to demonstrate demographic density dependence. However, such studies are usually small scale and typically provide evidence of spatial (within-generation) density dependence. It is often unclear whether small-scale, experimental tests of spatial density dependence will accurately describe temporal (between-generation) density dependence required for population regulation. Understanding the mechanisms generating density dependence may provide a link between spatial experiments and temporal regulation of populations. In this study, I manipulated the density of recently settled kelp rockfish (Sebastes atrovirens) in both the presence and absence of predators to test for density-dependent mortality and whether predation was the mechanism responsible. I also examined mortality of rockfish cohorts within kelp beds throughout central California to evaluate temporal (between-generation) density dependence in mortality. Experiments suggested that short-term behavioral responses of predators and/or a shortage of prey refuges caused spatial density dependence. Temporal density dependence in mortality was also detected at larger spatial scales for several species of rockfish. It is likely that short-term responses of predators generated both spatial and temporal density dependence in mortality. Spatial experiments that describe the causal mechanisms generating density dependence may therefore be valuable in describing temporal density dependence and population regulation.  相似文献   

14.
Schmitt RJ  Holbrook SJ 《Ecology》2007,88(5):1241-1249
The importance of density dependence in natural communities continues to spark much debate because it is fundamental to population regulation. We used temporal manipulations of density to explore potentially stabilizing density dependence in early survivorship among six local populations of a tropical damselfish (Dascyllus flavicaudus). Specifically, we tested the premise that spatial heterogeneity in the strength of temporal density dependence would reflect variation in density of predators, the agent of mortality. Our field manipulations revealed that mortality among successive cohorts of young fishes was density dependent at each reef, but that its strength varied by approximately 1.5 orders of magnitude. This spatial heterogeneity was well predicted by variation among the six reefs in the density of predatory fishes that consume juvenile damselfishes. Because density dependence arose from competition for enemy-free space within a shelter coral, the mortality consequence of the competition depended on the neighborhood density of predators. Thus, the scale of heterogeneity in the density dependence largely reflected attributes of the environment that shaped the local abundance of predators. These results have important implications for how ecologists explore regulatory processes in nature. Failure to account for spatial variation could frequently yield misleading conclusions regarding density dependence as a stabilizing process, obscure underlying mechanisms influencing its strength, and provide no insight into the spatial scale of the heterogeneity. Further, models of population dynamics will be improved when experimental approaches better estimate the magnitude and causes of variation in strength of stabilizing density dependence.  相似文献   

15.
Fauvergue X  Malausa JC  Giuge L  Courchamp F 《Ecology》2007,88(9):2392-2403
One frequent explanation for the failure of biological invasions is the Allee effect: due to positive density dependence, initially small invading populations may fail to establish and spread. Populations released for biological control are similar to fortuitous invading populations and may therefore suffer from Allee effects. However, unlike fortuitous invasions, biological control allows the experimental manipulation of initial population size and, thus, offers a unique opportunity to test for the occurrence of Allee effects. We manipulated the initial size of 45 populations of a parasitoid wasp introduced for the biological control of a phytophagous insect and followed the population dynamics of both parasitoids and hosts during three years. Our results suggest an absence of Allee effects but clear negative density dependence instead: (1) the probability of establishment after three years was not affected by initial population size; (2) net reproductive rate was highest at low parasitoid density and high host density; (3) the sex ratio, reflecting the proportion of virgin females, did not increase at low density, suggesting that low densities did not impede mate-finding; (4) the depression of host populations did not depend upon the number of parasitoids introduced. This is, to our knowledge, the first experimental test of the Allee effect in an invading parasitoid. It leads us to propose that a number of behavioral and life-history features of many parasitoids could protect them from Allee effects.  相似文献   

16.
Land managers often suggest fencing to protect rare plant species from being trampled in heavily used recreation areas, but there are few documented examples of the efficacy of this strategy. In a 7-year demographic study we examined the reproduction, survival, and long-term viability of the endangered sentry milk-vetch (Astragalus cremnophylax var. cremnophylax) before and after protection from trampling. Demographic monitoring and population viability analyses indicated that the population has fluctuated during the 7 years. Before protection the population declined: 26% of individuals died, mortality surpassed natality, and age of first reproduction was significantly older than post-protection. Fifty-eight percent of the population was severely damaged. Population viability analyses of pre-protection years predicted that the population would go extinct within 100 years. Since protection, the population stabilized, grew, and declined again. Seedlings reached reproductive maturity more quickly. Recruitment increased and peaked in 1993 coincident with abundant precipitation, but again declined in 1994. The total numbers of undamaged plants surpassed the numbers of damaged plants. Models of the post-protection population predict stability. Multiple-linear regression analysis indicated that winter and spring precipitation were significantly correlated with lambda. Both "good" and "bad" climatic conditions occurred during the pre- and post-protection periods. Because of small population size and depauperate genetic diversity, climate will continue to influence population growth. Nevertheless, models indicate that where trampling and bad climatic conditions were coupled, extinction was accelerated. Recovery of sentry milk-vetch will depend on continued protection, augmentation, and environmental factors, although risk of extinction remains very high.  相似文献   

17.
The North American population of canvasback ducks (Aythya valisineria) exhibits extreme distortion of the sex ratio in favor of males. This paper describes a model which accounts for this pattern by relatively heavier female mortality in both the breeding and nonbreeding seasons. The density-dependence of winter mortality leads to the conclusion that the observed sex ratio depresses total population numbers. Variation in nesting success is shown to influence sex ratios and strongly depress population numbers. Because a standard harvest scheme can be demonstrated to severely depress the numbers of ducks, an alternative graduated or weighted harvest procedure is recommended.  相似文献   

18.
The aim of this study was to identify potential environmental controls of the asexual phases of reproduction by measuring the rates of asexual reproduction (budding and strobilation) and mortality in naturally occurring populations of Aurelia sp. scyphistomae at different spatial and temporal scales. The percentage cover, density of colonies of Aurelia sp. scyphistomae, and density of the population of two naturally occurring colonies of Aurelia sp. scyphistomae were examined over 2 years in southern Tasmania. Artificial substrates were also deployed to investigate colony dynamics when density dependent effects were reduced. Clear spatial and temporal differences in the population dynamics of the colonies were observed. Density dependent effects controlled budding and recruitment of new scyphistomae to the substrate when populations were dense and space limiting. In contrast, environmental controls of budding and strobilation were more apparent in a colony with significantly greater area of bare substrate and hence room for expansion. Water temperature and rainfall (as a proxy for salinity) were linked to changes in population size. Annual and seasonal differences in population dynamics were not observed in a colony limited by space but were apparent in a colony where space was not limited. When space was removed as a limiting factor by deploying artificial substrates, a seasonal environmental effect on the rate of growth of the colony was observed. These studies suggest that the growth, survival and reproduction of the sessile colonial phase of Aurelia sp. is regulated by a combination of density dependent factors and environmental conditions, which are consequently important to the formation of jellyfish blooms.  相似文献   

19.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

20.
During population outbreaks, top-down and bottom-up factors are unable to control defoliator numbers. To our knowledge, details of biotic interactions leading to increased population density have not been studied during real population outbreaks. We experimentally assessed the strength of plant defenses and of insect immunocompetence, assumed to contribute to active insect resistance against parasitoids and pathogens, in the geometrid Epirrita autumnata during a steep increase in population density. We demonstrated rapid (same-season) induced resistance in the foliage of its host, mountain birch. The response was systemic, spreading throughout the tree, and retarded larval growth rate by approximately 10%. On the other hand, no direct delayed carry-over effects were found in the next season in larval growth rate, mortality, or pupal mass. Larval damage to a tree during the previous year, however, significantly (by approximately 13%) accelerated the advance of the immune response (measured as melanization of an implant inserted into the pupal hemocoel). The encapsulation rate correlated positively with larval mortality in trees in which larvae had been introduced the previous year, but not in control trees. Both of these observations suggest that induced plant defense was associated with an increased insect immunocompetence during the population increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号