首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, the chemical industry in Japan has been the cause of a number of major industrial accidents. Subsequent to each accident, specific lessons have been learned. These lessons learned have been implemented in terms of safety education of the employees and/or safety measures of the equipment and facilities resulting in a rapid decrease of corresponding accident frequencies. In this paper, we summarized both recent and past major accidents caused by chemical substances in fixed installations in Japan. Case studies show that runaway reactions are among the main causes of major accident occurrences in the chemical process industry in Japan. A recent fatal poisoning accident caused by H2S gas generated during maintenance work again highlights the necessity of adequate safety management in a chemical factory. Therefore, even if hazard evaluation of chemical substances and chemical processes is necessary to prevent runaway reactions, human error is also an important factor contributing to reaction hazards [Wakakura, M. (1997) Human factor in chemical accidents, J. Safety Eng. High Press. Gas. Safety Inst. Japan, 34, 846].  相似文献   

2.
The syngas produced by coal gasification processes can be utilized in Pd-based water-gas-shift membrane reactors for the production of pure H2. Pd/alloy composite membrane reactors exhibit comparative advantages over traditional packed bed reactors such as simultaneous reaction/separation in one compact unit and increased reaction yields. Furthermore, the development of comprehensive process intensification strategies could further enhance membrane reactor performance resulting in a substantially smaller and functional, inherently safer, environmentally friendlier and more energy efficient process.A systematic non-isothermal modeling framework under both steady state and dynamic/transient conditions for a catalytic high temperature water-gas shift reaction in a Pd-based membrane reactor has been developed to characterize the dynamic behavior of the process system at various operating conditions from a process safety standpoint. In particular, various reaction conditions as well as key process variables such as feed temperature and flow rate, catalyst loading, driving force for H2 permeation are considered as they are critically related to various safety aspects in the operation of a Pd-based membrane reactor. Within the proposed framework, process parameters and operating conditions which may induce hazards and compromise process safety are identified, analyzed and characterized. Finally, the proposed approach is evaluated through detailed simulation studies in an illustrative case study involving a real Pd-based membrane reactor used for pure hydrogen production and separation that exhibits complex behavior over a wide operating regime.  相似文献   

3.
As a commonly used initiator for polyethylene, tert-butyl peroxide 3,5,5-trimethylhexanoate (TBPTMH), with the molecular formula of C13H26O3, is more likely to decompose and cause fires and explosions. Understanding the thermal risks of TBPTMH mixed with common metal ions, potentially in containers and pipes, is important. In this work, by using differential scanning calorimetry (DSC) and Phi-Tec adiabatic calorimetry, the effects of CuCl2, FeCl3, CuBr2, and FeBr3 on the thermal decomposition of TBPTMH were investigated. Adiabatic kinetic analysis was performed and the apparent activation energy (Ea) was calculated by thermodynamic analysis. Time to maximum rise under adiabatic conditions (TMRad) and the self-accelerating decomposition temperature (SADT) under different packing qualities were reckoned. It was found that the thermal risk of TBPTMH was increased while mixing these metal ions, especially CuBr2. To ensure the safety of the substance in process industry, the temperature of TBPTMH in the presence of metal should be governed below 39.48 °C. This work was expected to provide some guidance for improving the process safety of TBPTMH.  相似文献   

4.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

5.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

6.
To accurately predict the development degree of coal spontaneous combustion (CSC), the CSC process was investigated using a programmed high-temperature-heating experimental system, and the variation law of index gas concentration in the holistic process of CSC and oxidation is formulated. Additionally, the accuracy of the experimental system was evaluated using experimental design for thermal analysis, and the correlation between gas index and apparent activation energy was determined using grey correlation analysis. The results indicated the following. In the critical temperature stage (0–100 °C), φ(CO)/φ(CO2) should serve as the main index and C2H4 should serve as the auxiliary index; in the crack-active-speedup temperature stage (100–260 °C), CO and φ(C2H4)/φ(C2H6) should serve as the main index and R1, the Graham index, and φ(C2H4)/φ(CH4) should serve as auxiliary indexes; in the speedup-ignition temperature stage (260–370 °C), R2 and the Graham index should serve as main indexes and φ(CO)/φ(CO2), C2H4, and R1 should serve as auxiliary indexes; in the ignition temperature (370–500 °C), R3 should serve as the main index and R2, the Graham index and C2H4 should serve as auxiliary indexes. Among them, the grey correlation degrees among the Graham index, Grignard fire coefficient, and apparent activation energy were the highest, reaching 0.91.  相似文献   

7.
Toxic gas-containing flammable gas leak can lead to poisoning accidents as well as explosion accidents once the ignition source appears. Many attempts have been made to evaluate and mitigate the adverse effects of these accidents. All these efforts are instructive and valuable for risk assessment and risk management towards the poisoning effect and explosion effect. However, these analyses assessed the poisoning effect and explosion effect separately, ignoring that these two kinds of hazard effects may happen simultaneously. Accordingly, an integrated methodology is proposed to evaluate the consequences of toxic gas-containing flammable gas leakage and explosion accident, in which a risk-based concept and the grid-based concept are adopted to combine the effects. The approach is applied to a hypothetical accident scenario concerning an H2S-containing natural gas leakage and explosion accident on an offshore platform. The dispersion behavior and accumulation characteristics of released gas as well as the subsequent vapor cloud explosion (VCE) are modeled by Computational Fluid Dynamics (CFD) code Flame Acceleration Simulator (FLACS). This approach is concise and efficient for practical engineering applications. And it helps to develop safety measures and improve the emergency response plan.  相似文献   

8.
Accidents in the process industry could be prevented or reduced by having good safety management measures. Such preventive measures could be further improved through the experiences and lessons learnt from past accidents. Therefore, analysis results of past accidents are valuable sources of information for determining root causes and as case material to prevent and reduce the adverse consequences of accidents in the process industry.This paper looks at accidents in the process industry that have occurred in the past 10 years from 1997 to 2006 in Sri Lanka to gain an understanding of the nature and consequences of accidents. Lessons and main areas of concern to improve safety in the Sri Lanka process industry are discussed. The analysis is done for different event types based on specific operating process stage during which the accident occurred such as processing, loading and unloading, repair and maintenance and storage, the immediate effect types such as fire, explosion, chemical releases and emissions and the consequences of each accident. Fire incidents were observed in 38 accidents analyzed. The results show that the highest number of accidents has occurred during processing operations followed by accidents during maintenance and repair work. The cause analysis shows that many accidents have occurred due to technical and human failures.The accidents are then classified according to the severity of the consequences in order to compare the nature of accidents experienced in Sri Lanka with respect to accidents in other countries in the world.  相似文献   

9.
Hydrogen peroxide (H2O2), historically, due to its broad applications in the chemical industries, has caused many serious fires and explosions around the world. Its thermal hazards may also be incurred by an incompatible reaction with other chemicals, and a runaway reaction may be induced in the last stage. This study applied thermal analytical methods to explore the H2O2 leading to these accidents by incompatibility and to discuss what might be formed by the upset situations. Thermal hazard analysis contained a solvent, propanone (CH3COCH3, so-called acetone), which was deliberately selected to mix with H2O2 for investigating the degree of thermal hazard. Differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to evaluate the thermal hazard of H2O2. The results indicated that H2O2 is highly hazardous while mixed with propanone, as a potential contaminant. The time to maximum rate (TMR) was used as emergency response time in the chemical industries. Therefore, TMR of H2O2 was calculated to be 70 min for runaway reaction (after T0) and TMR of H2O2/propanone was discovered to be 27 min only. Fire and explosion hazards could be successfully lessened if the safety-related data are properly imbedded into manufacturing processes.  相似文献   

10.
11.
Process safety practices have undergone multiple refinements over the past few decades, but major accidents continue to occur. Most organizations strive to improve performance by strengthening existing methods or by adopting new and/or different approaches. Central to these continual improvement efforts is the practice of applying lessons learned as a means to drive out potential risk exposures. Often, lessons learned may be transferred from other industries; indeed, high-performing organizations regularly benchmark practices outside of their immediate industry.In pursuit of continual process safety improvement, this paper examines risk management practices in the Rail Industry, and explores how methods intended for managing passenger and public rail safety may be transferred to drive continual improvement of process safety. Rail safety has its roots in engineered safety solutions; modern practices have additionally embraced the human aspects of safety performance. A selection of approaches for rail safety assessment and risk management are described in three areas considered fundamental to safety management: management of systems, management of technology, and management of human elements. In light of these examples, the authors provide views regarding how the field of process safety management may leverage the rail experience.  相似文献   

12.
IntroductionSafe behavior and work conditions are a major concern in construction projects. However, accidents occur due to system failures, not a single factor such as unsafe behavior or condition. Construction safety should be investigated by a systematic view capable of illustrating the complex nature of accidents.MethodThe present research aims to detect and categorize behavior patterns recurring in construction safety management continuously. Content analysis and ground theory method (GTM) were adopted to achieve the study objectives. In total, 90 articles were reviewed to explore the factors influencing safety in construction projects all over the world. Furthermore, 20 interviews were conducted on participants with rich experience in construction health and safety. Four archetypes were identified from data collection process, including delay in design, number of subcontractors, cost and safety of project, and supervisors and safety. Each archetype is completely discussed at different steps of dynamic complexity, behavior over time, and the leverage point to show how to deal with the archetype.  相似文献   

13.
The auto-ignition temperature (AIT) is an important parameter in the process industries. In order to ensure a safe working environment in process industries, it is important to predict the AIT of combustible gases or vapors. In this study, the AITs of natural gas mixtures (CH4–Air, C3H8–Air, CH4–C3H8–Air and CH4–CO2–Air) are calculated based on a detailed kinetic model. To create a more practical model, different ignition criteria and convective heat transfer coefficients are investigated and compared against one another, resulting in the temperature criterion and a convective heat transfer coefficient of h = 50 W/(m2 K). The results showed that the AITs of CH4–Air and C3H8–Air decrease with an increase of equivalence ratios. While the propane ratio increasing, the AIT of CH4–C3H8–Air decreasing. Reaction path analysis of natural gas mixtures (CH4–C3H8) was also carried out to explain this phenomenon, yielding results showing that C3H8 is the main reaction during the ignition induction period. In addition the AIT of CH4 increases slowly in positive correlation with CO2, which plays a role of an inert gas. Comparing the results with literature work revealed a deviation of about 10%. Thus, it can be reasonably concluded that the AIT of a low hydrocarbons mixtures such as natural gas can be reliably predicted with detailed kinetic model.  相似文献   

14.
Hydrothermal liquefaction is an attractive approach for the conversion of aquatic biomass like algae as it does not require the energy intensive drying steps. The objective of the study is to understand the effect of various solvents (H2O, CH3OH and C2H5OH) on product distribution and nature of products of hydrothermal liquefaction of macro algae Ulva fasciata (MAUF). Hydrothermal liquefaction of MAUF was performed using subcritical H2O (300 °C) as well as supercritical organic solvents CH3OH and C2H5OH (300 °C). The use of alcoholic solvents significantly increased the bio-oil yield. The bio-oil yield was 44% and 40% in case of liquefaction with CH3OH and C2H5OH respectively whereas the bio-oil yield was 11% with H2O. Use of alcoholic solvents converted the acids obtained in bio-oil to the corresponding methyl and ethyl esters. 1H NMR data showed that use of alcoholic solvents (C2H5OH and CH3OH) increased aliphatic content of bio-oil1 (ether/methanol/ethanol fraction). FTIR and SEM results showed the difference in the bio residue obtained using alcoholic solvents and H2O. The results showed that liquefaction with supercritical alcohols is an effective way to produce functional hydrocarbons for chemical feedstock.  相似文献   

15.
Integration of a mathematical model approach with hazard and operability (HAZOP) analysis is presented in this contribution. The presented analysis is based on the mathematical modelling of a process unit, where both the steady-state analysis (including continuation and bifurcation analyses), and the dynamic simulation are used. The main benefit of this integration is the ability to perform a detail safety analysis for a relatively complicated process. Such an approach may dramatically decrease the possibility that several sources of hazard will be overlooked. Of course, the presented methodology may also seriously reduce the time necessary for the hazard identification process. In this paper, a methyl tertiary-butyl ether (MTBE) production unit was chosen to identify potential hazard and operational problems of a real process. This simplified case-study unit consists of two investigated types of equipment: a tubular fixed bed reactor and a reactive distillation column.  相似文献   

16.
A number of chemical accidents have occurred in China over the past two decades with significant impact on humans and the environment. It is expected that lessons will have been learned from these accidents that will help industries to reduce the risk that catastrophic chemical accidents occur in future. In fact, to some extent there is evidence that lessons have been learned, to the extent that the Chinese government has substantially strengthened legislation and regulatory standards. Nonetheless, there remains a concern that much more still needs to be done to reduce chemical accidents risks in China. Important progress in this area requires not only government support but a commitment across all hazardous industries to learn from past accidents that may in many cases require establishment or considerable improvement of their safety management systems. To assist small and medium-sized enterprises (SMEs), in this effort, results of an analysis of common causes of the chemical accidents reported in the Major Accident Information (MAI) website of Chinese State Administration of Work Safety (SAWS) are presented in this paper In particular, inadequate process hazard analysis (PHA), training and emergency response planning (ERP) were identified as the top three process safety management (PSM) elements that contribute to most of the SMEs accidents in China. Seven recommendations are proposed in order to improve the effectiveness of lesson learning for government agencies and SMEs.  相似文献   

17.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

18.
Products of a hydrocarbon fire accident have both chronic and acute health effects. They cause respiratory issues to lung cancer. While fire is the most frequent phenomenon among the offshore accidents, predicting the contaminants’ concentration and their behavior are key issues. Safety measures design, such as ventilation and emergency routes based only on predicted contaminants’ concentration seems not to be the best approach. In a combustion process, various harmful substances are produced and their concentration cannot be added. The time duration that any individual spends in different locations of an offshore installation also varies significantly. A risk-based approach considers the duration a person is exposed to contaminants at various locations and also evaluates the hazardous impacts. A risk-based approach has also an additivity characteristic which helps to assess overall risk.Through the current study, an approach is proposed to be used for risk assessment of combustion products dispersion phenomenon in a confined or semi-confined facility. Considering CO, NO2 and CH4 as the contaminants of concern, the dispersion of the substances over the layout of the facility after a LNG fire is modeled. Considering different exposure times for three major parts of the facility including the processing area, office area and the accommodation module, the risk contours of CO, NO2 and CH4 over the entire facility are developed. The additivity characteristic of the risk-based approach was used to calculate the overall risk. The proposed approach helps to better design safety measures to minimize the impacts and effective emergency evacuation planning.  相似文献   

19.
铁路安全与人为失误问题的研究   总被引:2,自引:1,他引:2  
安全是铁路各项工作的基石。为了更好地保障铁路运输的安全运营 ,除采用先进科技成果和应用现代安全管理方法外 ,还应该不断地总结经验教训。笔者分析了两起典型的铁路重大事故 ,从而得出事故的主要原因在于人。人在能动地改造自然界的过程中 ,有时会产生一些重大失误 ,所以要有效地控制人的因素 ,从而提高安全管理中的“自控、他控、互控”手段。  相似文献   

20.
This study presents a new simple correlation between electric spark sensitivity of nitramines and their activation energies of thermolysis, which are important for safety measures in industrial processes. The new correlation can help to elucidate the mechanism of initiation of energetic materials by electric spark. It can be used to predict the magnitude of electric spark sensitivity of new nitramines, which is difficult to measure. The methodology assumes that electric spark sensitivity of a nitramine with general formula CaHbNcOd can be expressed as a function of its activation energy of thermal decomposition as well as optimized elemental composition and the contribution of specific molecular structural parameters. The new correlation has the root mean square and the average deviations of 1.37 and 1.09 J, respectively, for 21 nitramines with different molecular structures. The proposed new method is also tested for 16 nitramines so that there is no experimental data of electrostatic sensitivity for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号