首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
Under study are the regimes of detonation propagation in channels with linear expansion filled with monodisperse mixtures of oxygen and ultrafine aluminum particles of various loading; the methods of numerical simulations are used. The detonation combustion of submicron aluminum particles is described within the semi-empirical model of reduced kinetics with due regard to the transition from the diffusion-limited regime of combustion to the kinetic one. Waves of both planar and developed cellular detonation are considered as initial conditions. The characteristics of the main flow regimes are obtained and described: the subcritical (detonation failure), critical (detonation failure in some part of the channel) and supercritical (continuous detonation propagation). The maps of flow regimes in suspensions of 200-nm – 400-nm particles are presented in the plane of parameters: the channel width, expansion angle. The obtained critical conditions are similar to those observed in the gas detonation. The critical channel width linearly depends on the expansion angle up to a first critical value (35°–38°). Behind the second critical value (50°), the channel width is independent on the expansion angle. Between these values, there is an interval of nonmonotonicity similar to the detonation of micro-sized suspensions of aluminum particles. The effect of particle loading on the critical conditions in poor mixtures appears in the form of a sharp increase in the critical channel width, if the mass concentration falls below 0.25.  相似文献   

2.
3.
粉尘爆炸是工业爆炸灾害的重要形式。建立可燃颗粒非均相系统的燃烧爆轰模型,基于Eulerian-Eulerian数值描述方法,采取有限差分方法编制非均相系统燃烧和爆轰发展的数值模拟程序,对封闭空间内两相非定常爆轰过程进行研究。数值分析可燃颗粒尺度、颗粒浓度对非均相系统燃烧、爆轰特性的影响。结果表明:在一定的范围内,当可燃颗粒的体积分数为10%,粒径0.5mm时,流场的燃烧爆轰效应最强。即10.6ms时刻,流场压力值达到28MPa,温度高达2600K,颗粒燃烧效率最高。  相似文献   

4.
An interaction of a detonation wave propagating in the cellular detonation mode with a cloud of inert particles is investigated numerically. The analysis of results allows the regimes of propagation of the heterogeneous plane Chapman–Jouguet and cellular detonations and their suppression to be identified. The influence of various parameters of the inert cloud is demonstrated. The critical length of the cloud sufficient for detonation suppression is determined. It is shown that the disperse composition and the nonuniform distribution of particles in the cloud are important parameters affecting the detonation propagation mode.  相似文献   

5.
Structure of flames propagating through aluminum particles clouds and combustion processes of the particles have been examined experimentally to understand the fundamental behavior of a metal dust explosion. The combustion process of individual aluminum particles in a flame propagating through the aluminum particles cloud has been recorded by using a high-speed video camera with a microscopic optical system, and analyzed. The flame is shown to be consisted of a preheat zone of about 3 mm thick, followed by a combustion zone of 5–7 mm thick. In the combustion zone, discrete gas phase flames are observed around each aluminum particle. Also an asymmetric flame around a particle is observed, which might be caused by an ejection of aluminum vapor from a crack of oxide shell surrounding the particle.  相似文献   

6.
张铖铖  方俊  林树宝  江澄  商蕊 《火灾科学》2014,23(4):238-244
烟颗粒粒径分布和浓度变化是探测香烟阴燃火灾初期的重要参数,研究香烟阴燃过程烟颗粒粒谱分布对火灾探测具有指导意义。实验通过在室内有风条件下展开,研究风速、位置、时间、烟源等因素对烟颗粒的粒径分布和形成规律的影响。结果表明:1随着时间的推移,GMD(Geometric Mean Diameter,几何平均直径)变大,烟颗粒数量浓度增加,但粒谱分布逐渐趋于稳定。2风速对颗粒粒谱形成的影响较为复杂,随着风速的增加,气流扰动加剧,烟颗粒浓度增加,GMD有减小的变化趋势。3在不同的位置,有风条件下烟颗粒随着气流迁移,最终在壁面处进行积累,离烟源越远位置,沿着风速方向浓度和GMD均变大。4烟颗粒的初始浓度也影响烟颗粒粒谱分布和运动特征,烟源数量越多,初始浓度越大,形成的烟颗粒浓度和GMD越大。  相似文献   

7.
The problems of lifting and dispersing of a dust layer behind the propagating shock wave as well as ignition, combustion of coal particles and dust-layered detonation formation in a tube are numerically investigated. The layered detonation is formed at large distance from the place of the primary shock wave initiation (~100 diameters of the tube). The strong oblique transverse shocks caused by combustion zone were discovered. The acceleration of leading shock wave and dust-layered detonation formation are connected with increasing and intensification of combustion zone which strongly depends on arising system of the oblique waves due to the development of the dust layer instabilities and vice versa. In the applied model, the moving medium is treated as a two-phase, two-velocity and two-temperature continuum with mechanical and thermal interphase interaction. The numerical procedure is based on the finite-volume approach and is implemented for parallel computing. The results obtained are of interest for applications in predictive modelling of accidents in industrial systems with reactive dust.  相似文献   

8.
氢气爆炸特性研究   总被引:3,自引:0,他引:3  
本文研究、总结了氢气与空气(氢气与氧气)的混合物的爆炸特性.即氢气在空气中,在比较低燃烧界限的情况下,只有向上的传播和非常少的超压可以观测得到.正因为氢气的这种特性,将氢应用于科技将极大地推进社会进步,氢燃料将成为一种主要的能源.然而,氢技术应用的成功与否主要取决于氢使用的安全性.所以,必须掌握实际使用时氢气燃烧的性能.本文在日本过去十年实验数据的基础上,通过实验研究了氢气与空气混合物的燃点.研究了氢气、氧气混合物经氮气稀释后,按化学当量比例将不同浓度的氢气与空气进行混合,并得出了低温下的爆炸压力特性.随后,分别讨论了在初始压力下一致的情况下,试管直径相同的状况下,氢气与空气混合浓度相同的情况下,这三种爆轰传播限制之间的关系.得出了在空气中直接点燃的发生爆轰的最小试管直径,最小的装药量之间的关系,进行了爆轰危险性分级.最后,文章概括比较了氢与其他燃料的燃烧特性,评估了氢气燃烧过程中的危险与安全因素.  相似文献   

9.
The theory of stationary adiabatic and non-adiabatic ignition waves in magnesium aerosuspension is developed on the basis of the mathematical model based on two-velocity two-temperature approach of mechanics of heterogeneous media. Specifically, the conditions such that the particle cloud ignites under the action of an initiating shock wave (SW) are defined. An agreement between the adiabatic one-velocity model and the adiabatic two-velocity model on the ignition delay time for small particles is shown. Influence of particle size on this characteristic is compared for both models. Validation of the two-velocity model is performed on the basis of comparison with the experimental data. The unified formula for calculation of the induction period of the magnesium particle mixture in oxygen which takes into account its dependence on the SW Mach number and particle radius is found.  相似文献   

10.
Temperature measurement on propagating flame and minimum explosible concentration are investigated. The dust explosion experiments of nano-particle dust clouds exhibit higher temperature gradient in preheat zone and lower MEC than those of micron particle dust clouds. A heterogeneous model is proposed to describe the oxidation process under two extreme conditions: whether the alumina film is involved in the reaction or not. The new methodology allows the estimation of oxidation kinetics of growing alumina. For micron particle, the model clarifies that the activation energy which has been wrongly considered to be for aluminum oxidation should be for lattice diffusion, and the initial reaction rate is proved to be dominated by the diffusion rate of oxygen through alumina shell as diffusion controlled reaction. For nano-particle, the model explained that why the reported activation energy shows significantly lower than that for micron particle, due to initially ignorable alumina film or considered as kinetically controlled reaction. However, as reaction occurs and alumina builds up on the surface, the interference of alumina somewhat increases the activation energy.  相似文献   

11.
Most of the numerical benchmarks on combustion in large scale volumes for hydrogen safety, which were performed up until today have demonstrated, that current numerical codes and physical models experience poor predictive capabilities at the industrial scale, both due to under-resolution and deficiencies in combustion modeling. This paper describes a validation of the EUROPLEXUS code against several large scale experimental data sets in order to improve its hydrogen combustion modeling capabilities in industrial settings (e.g. reactor buildings). The code is based on the Euler equations and employs an algorithm for the propagation of reactive interfaces, RDEM, which includes a combustion wave, as an integrable part of the Reactive Riemann problem, propagating with a fundamental flame speed (being a function of initial mixture properties as well as gas dynamics parameters). Validation of the first combustion model implemented in the code is based on obstacle-laden channels, interconnected reactor-type compartments, vented enclosures and covers all major premixed flame combustion regimes (slow, fast and detonation) with an aim to obtain conservative results. An improvement of this model is found in a direction of transient interaction of flame fronts with regions of elevated integral length scales presented in the velocity gradient field due to e.g. interactions with geometrical non-uniformities and pressure waves.  相似文献   

12.
Ignition and combustion of solid particles are the issues of interest for many industrial applications. When simulating ignition and combustion of solid particles using available standard (ST) models, a number of simplifying assumptions are usually adopted, which are not always justified. For example, for calculating heat flux to particle surface, the Newton law is often applied with the heat flux proportional to the difference between the gas temperature and the mean particle temperature. However, Newton law is known to be valid only for steady-state heat transfer. Moreover, the actual heat flux is determined by the particle surface temperature rather than its mean temperature. The objective of this work is to develop a new particle-heating model with the correction factors to the Newton law taking into account transient heat transfer to a particle and nonuniform temperature distribution inside the particle. It was shown that the new particle-heating model correlates much better with detailed numerical calculations than the ST model. The transient heating effects were shown to be important for the problem of solid particle ignition in the oxidizer gas.  相似文献   

13.
In this research combustion of iron dust particles in a medium with spatially discrete sources distributed in a random way has been studied using a numerical approach. A new thermal model is generated to estimate flame propagation speed and quenching distance in a quiescent reaction medium. The flame propagation speed is studied as a function of iron dust concentration and particle diameter. The predicted propagation speeds as a function of these parameters are shown to agree well with experimental measurements. In addition, the minimum ignition energy has also been investigated as a function of equivalence ratio and particle diameter. The quenching distance has been studied as a function of particle diameter and validated by the experiment. Considering random distribution of particles, the obtained results provide more realistic and reasonable predictions of the combustion physics compared to the results of the uniform distribution of particles.  相似文献   

14.
15.
16.
An experimental investigation was carried out on the influences of dust concentration, particle size distribution and humidity on aluminum dust explosion. Tests were mainly conducted thanks to a 20 L explosion sphere. The effect of humidity was studied by storing the aluminum particles at constant relative humidity until the sorption equilibrium or by introducing water vapour in the explosion vessel. The tested particles sizes ranged from a volume median diameter of 7 to 42 μm and the dust concentrations were up to 3000 g m?3.Among other results, the strong influence of the particle size was pointed out, especially when the Sauter mean diameter is considered. These results stressed the predominance of the specific surface area on the mass median particle diameter.The effect of water on aluminum dust explosion was decoupled: on the one hand, when water adsorption occurs, hydrogen generation leads to an increase of the explosion severity; on the other hand, when the explosion of dried aluminum powder occurs in a humid atmosphere, the inhibiting effect of humidity is put forward.A model based on mass and heat balances, assuming a shrinking core model with chemical reaction limitation, leads to a satisfactory representation of the pressure evolution during the dust explosion.  相似文献   

17.
The dust explosion behaviors induced by two different combustion mechanisms (homogeneous and heterogeneous mechanisms) were comparatively investigated, based on the experiments under different dust concentrations, particle sizes and initial pressures in Siwek 20-L chamber. Based on the thermo-gravimetric analysis (TGA), sweet potato dust and magnesium dust were selected as the representative dusts with homogeneous and heterogeneous combustion mechanisms, respectively. Experiments find that these two dusts have different behaviors in the explosion kinetics due to different combustion mechanisms. For sweet potato dust, the explosion pressure pmax, the pressure rise rate (dp/dt)max and the combustion fraction η exhibit similar variation trends as dust concentration increases and they all reach to the maximum values at the worst-case concentration; while for magnesium dust, the variation of (dp/dt)max is somewhat different from that of pmax, that is, the (dp/dt)max will achieve the maximum at the concentration higher than the worst-case and keep stabilized with further increase of dust concentration. As the particle size decreases, the (dp/dt)max for sweet potato dust will increasingly rise and gradually approach to a stabilized value, but for magnesium dust, the increase of (dp/dt)max becomes pronounced only in the range of smaller particle sizes. To account the effect of initial pressure on pmax under different combustion mechanisms, a dimensionless pressure PR was introduced to denote the relative intensity of explosion. It is found that, for sweet potato dust, the increased initial pressure will promote the explosion process (or with high PR) for the dust cloud with high concentration due to the augmented oxygen concentration, but for the dust cloud with low concentration, the increased initial pressure will suppress the explosion process due to the increased resistance in devolatilization. For magnesium dust, the rise of initial pressure will generally promote the explosion process even for the dust cloud with low concentration; however, in the case of small particle size, the promotion of increased initial pressure to the explosion process is not so pronounced.  相似文献   

18.
In this study, the dependence of the flammable concentration on particle size is investigated for Phase Change Material (PCM) and Encapsulated Phase Change Material (EPCM) particles using a novel continuous particle dispersion apparatus into which a propane flame is introduced creating a test akin to the flash-point test for liquids. The results show that the threshold concentration is a strong function of particle size. For tested particles with size ranging from 290 μm to 750 μm, the threshold concentration is above the predictions based on an instantaneous heat transfer limit, and is approximately linear with the particle size, following a heat transfer limited ignition model. For sizes above ≈1 mm, the particles behave like the bulk material, and ignition is not observed for the concentrations tested. The results obtained here are important for the safe construction, handling, and operation of systems using PCM and other particles.  相似文献   

19.
20.
为探索铝粉尘云燃烧火焰形态和灾变演化,基于改造的竖直开口实验管道,借助高速摄像仪和离子探针,研究火焰结构及变化,分析粒径因素对铝粉火焰前锋形态的影响。实验结果表明:铝粉燃烧能量的释放和空间束缚使燃烧转为爆燃,火焰前锋下方存在大片的燃烧反应区;铝粉粒径越小,颗粒氧化层破裂需要的热应力越小,越容易被点燃;随着铝粉粒径减小,热膨胀对火焰传播速度的影响明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号