首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH4 h−1, whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH4 h−1. The CH4 emission from the compost area was 0.5 ± 0.25 kg CH4 h−1, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 ± 166 kg CO2 h−1 and 0.06 ± 0.03 kg N2O h−1, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h−1 CH4, and 0.03 ± 0.01 kg h−1 N2O.  相似文献   

2.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.  相似文献   

3.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

4.
Antibiotics of inorganic and organic origin in pig manure can inhibit the anaerobic process in biogas plants. The influence of three frequently used antibiotics, copper dosed as CuSO4, sulfadiazine (SDZ), and difloxacin (DIF), on the anaerobic digestion process of pig manure was studied in semi-continuous experiments. Biogas production recovered after every Cu dosage up to a sum of 12.94 g Cu kg−1 organic dry matter (ODM), probably due to Cu precipitation following the formation of sulphide from sulphate. Complete inhibition was found at the very high Cu concentration of 19.40 g Cu kg−1 ODM. Inhibitory effect of SDZ and DIF was observed at concentrations as high as 2.70 g kg−1 ODM and 0.54 g kg−1 ODM, respectively. It seems very unlikely that the antibiotics tested would inhibit the anaerobic process in a full-scale biogas plant.  相似文献   

5.
Co-composting of chicken manure, straw and dry grasses was investigated in a forced aeration system to estimate the effect of aeration rates on NH3, CH4 and N2O emissions and compost quality. Continuous measurements of gas emissions were carried out and detailed gas emission patterns were obtained using an intermittent-aeration of 30 min on/30 min off at rates of 0.01 (A1), 0.1 (A2) and 0.2 (A3) m3 min−1 m−3. Concentrations of CH4 and N2O at the low aeration rate (A1) were significantly greater than those at the other two rates, but there was no significant difference between the A2 and A3 treatments. CH4 and N2O emissions for this mixture could be controlled when the composting process was aerobic and ammonia emissions were reduced at a lower aeration rate. Comparison of CH4, N2O, NH3 emissions and compost quality showed that the aeration rate of the A2 treatment was superior to the other two aeration rates.  相似文献   

6.
A pilot biotrickling filter (BTF) packed with ZX02 fibrous balls as packing material was tested for the treatment of ammonia (NH3) released from a composting plant of dairy manure. In order to investigate the effects of three compost aeration modes (mode Co-I, Co-II and In-II) on the NH3 removal efficiency, a field experiment was continuously carried out for more than eight months. The results demonstrated that under the intermittent aeration mode (In-II), the NH3 removal efficiency reached 99.2 ± 0.1% when the inlet NH3 concentration was 7.5-32.3 mg m−3 (9.8-42.5 ppmv). The maximum and critical elimination capacity of the biotrickling filter was 22.6 and 4.9 g NH3 m−3 h−1, respectively. The effluent concentration of NH3 was lower than 1.0 mg m−3, which meets the first class discharge standards of GB14554-93. When the concentration of free ammonia in the trickling liquid was varied from 0.1 to 0.4 mg L−1, the nitrification yield was between 47.9% and 103.8%. In addition, the optimum liquid tricking velocity (LTV) of the biotrickling filter was 0.5 m3 m−2 h−1 for low inlet concentrations and 2.2 m3 m−2 h−1 for high inlet concentrations. Therefore, the use of the biotrickling filter for the compost under the third aeration mode (In-II) yielded an effective optimum NH3 removal and reduced the nitrogen loss in the compost.  相似文献   

7.
The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH4-input of 5.6 l CH4 m−2 h−1. Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH4-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.  相似文献   

8.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

9.
Availability and properties of materials for the Fakse Landfill biocover   总被引:1,自引:0,他引:1  
Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m−2 d−1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined to be the optimal material for the biocover. Comparing the results to criteria given in the literature it was found that the C/N ratio was the best indicator of the methane oxidation capacity of compost materials. The results of this work indicate that batch incubations measuring methane oxidation rates offer a low-cost and effective method for comparing compost sources for suitability of use in landfill biocovers.  相似文献   

10.
The capacity of laboratory-scale aerated biofilters to oxidize methane was investigated. Four types of organic and mineral-organic materials were flushed with a mixture of CH4, CO2 and air (1:1:8 by volume) during a six-month period. The filter bed materials were as follows: (1) municipal waste compost, (2) an organic horticultural substrate, (3) a composite of expanded perlite and compost amended with zeolite, and (4) the same mixture of perlite and compost amended with bentonite. Methanotrophic capacity during the six months of the experiment reached maximum values of between 889 and 1036 g m−2 d−1. Batch incubation tests were carried out in order to determine the influence of methane and oxygen concentrations, as well as the addition of sewage sludge, on methanotrophic activity. Michaelis constants KM for CH4 and O2 were 4.6-14.9%, and 0.7-12.3%, respectively. Maximum methanotrophic activities Vmax were between 1.3 and 11.6 cm3 g−1 d−1. The activity significantly increased when sewage sludge was added. The main conclusion is that the type of filter bed material (differing significantly in organic matter content, water-holding capacity, or gas diffusion coefficient) was not an important factor in determining methanotrophic capacity when oxygen was supplied to the biofilter.  相似文献   

11.
Landfill leachate contains a high concentration of ammoniacal substances which can be a potential supply of N for plants. A bioassay was conducted using seeds of Brassica chinensis and Lolium perenne to evaluate the phytotoxicity of the leachate sample. A soil column experiment was then carried out in a greenhouse to study the effect of leachate on plant growth. Two grasses (Paspalum notatum and Vetiver zizanioides) and two trees (Hibiscus tiliaceus and Litsea glutinosa) were irrigated with leachate at the EC50 levels for 12 weeks. Their growth performance and the distribution of N were examined and compared with columns applied with chemical fertilizer. With the exception of P. notatum, plants receiving leachate and fertilizer grew better than those receiving water alone. The growth of L. glutinosa and V. zizanioides with leachate irrigation did not differ significantly from plants treated with fertilizer. Leachate irrigation significantly increased the levels of NHx-N in soil. Although NOx-N was below 1 mg N L−1 in the leachate sample, the soil NOx-N content increased by 9-fold after leachate irrigation, possibly as a result of nitrification. Leachate irrigation at EC50 provided an N input of 1920 kg N ha−1 over the experimental period, during which up to 1050 kg N ha−1 was retained in the soil and biomass, depending on the type of vegetation. The amount of nutrient added seems to exceed beyond the assimilative capability. Practitioners should be aware of the possible consequence of N saturation when deciding the application rate if leachate irrigation is aimed for water reuse.  相似文献   

12.
Survey information was used to develop a minimum cost spatial dairy manure transportation model where environmental quality and crop nutrient requirements were treated as constraints. The GIS model incorporated land use types, exact locations of dairy farms and farmlands, road networks, and distances from each dairy farm to receiving farmlands to identify dairy manure transportation routes that minimized costs relative to environmental and other constraints. Our analyses indicated that the characteristics of dairy manure, its bulk and relatively low primary N, P2O5 and K2O nutrient levels limit the distribution areas or distances between the farms and the land over which the manure can be economically spread. Physical properties of the land limit the quantities of nutrients that can be applied because of excess nutrient buildup in soil and potential to harm nearby waterbodies and downstream people and places. Longer distances between dairy and farmland favor the use of commercial fertilizers due to the high cost of manure transportation. At $0.08 per ton per km transportation cost, the optimal cut-off distances for dairy manure application is 30 km for N and 15 km each for P2O5 and K2O consistent rules. An analysis of dairy manure application to different crop types suggest that, on average, 1 ha of land requires 61 tons of dairy manure to meet the recommended N, P2O5 and K2O needs.  相似文献   

13.
Rates of methane emission from a Swedish landfill, measured by chamber technique and permanent frames, ranged between 0.034 and 20 mmol CH4m−2. h−1on average. The emissions followed a seasonal pattern, with the highest fluxes occurring between September and May. Methane concentrations in soil also followed a seasonal pattern, with a marked decrease during summers. Using the means of methane emission rates from frost-free periods, a stepwise regression model was made, that could explain 95% of the variation. Soil temperature turned out to be the dominating factor, explaining 85% when transformed to a second-degree function. Methane emissions were negatively correlated with soil temperature, which strongly suggests that biological methane oxidation is an important regulating factor. The activity of methane-oxidizing microorganisms was greatest around 0.5–0.6 m depth in the soil profile, and moisture at this level enhanced emissions. The tendency for methane emissions to be higher at night was probably due to the inhibitory influence of low soil temperatures on methane-oxidizing microorganisms.  相似文献   

14.
The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides, and 0.1 mg kg−1 for macrolides) stated in ‘Official Standard of Feeds’ under the ‘Control of Livestock and Fish Feed Act’ in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg−1 for tetracyclines and 21 exceeded 0.2 mg kg−1 for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.  相似文献   

15.
This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO2 g VS−1 day−1. Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L−1 d−1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO2 at a rate lower than 25 mg CO2 g VS−1 d−1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO2 g VS−1 d−1. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.  相似文献   

16.
Using first-order kinetic empirical models to estimate landfill gas (LFG) generation and collection rates is well recognized in the literature. The uncertainty in the estimated LFG generation rates is a major challenge in evaluating performance of LFG collection and LFG to energy facilities. In this investigation, four methods for quantifying first-order LFG generation model parameters, methane generation potential, L0, and methane generation rate constant, k, were evaluated. It was found that the model is insensitive to the approach taken in quantifying the parameters. However, considering the recognition of using the model in the literature, the optimum method to estimate L0 and k is to determine L0 using disposed municipal solid waste composition and laboratory component specific methane potential values. The k value can be selected by model fitting and regression using the first-order model if LFG collection data are available. When such data are not available, k can be selected from technical literature, based on site conditions. For five Florida case-study landfills L0 varied from 56 to 77 m3 Mg−1, and k varied from 0.04 to 0.13 yr−1 for the traditional landfills and was 0.10 yr−1 for the wet cell. Model predictions of LFG collection rates were on average lower than actual collection. The uncertainty (coefficient of variation) in modeled LFG generation rates varied from ±11% to ±17% while landfills were open, ±9% to ±18% at the end of waste placement, and ±16% to ±203% 50 years after waste placement ended.  相似文献   

17.
AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH4 (70%) and carbon dioxide (CO2) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH4 (27%) and nitrogen (N2) (71%), containing no CO2. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH4 mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH4 generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH4 emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH4 emission from the disposal site was found to be 820 ± 202 kg CH4 d−1. The total emission rate through the leachate collection system at AV Miljø was found to be 211 kg CH4 d−1. This showed that approximately ¼ of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.  相似文献   

18.
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.  相似文献   

19.
The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 °C), Cu2+ concentration (250-750 mg L−1) and H2O2 concentration (0-1500 mg L−1) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L−1, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H2O2 to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 °C, 250 mg L−1 Cu2+ and 0-1500 mg L−1 H2O2 resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H2O2 concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H2O2 concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.  相似文献   

20.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号