首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Carvalho SI  Otero M  Duarte AC  Santos EB 《Chemosphere》2008,73(11):1845-1852
Large volumes of wastewater with a high organic load are generated by the pulp and paper industry that negatively affect the quality of receiving waters. The main waste products in the pulp mill effluents are lignin derived macromolecular compounds, which are similar to natural humic substances and very resistant to wastewater treatments. Fulvic acids (FA) represent the higher percentage of these humic substances and it was observed that solar irradiation modify their properties. Several analytic tools, namely, UV–Visible, molecular fluorescence and FTIR spectroscopies, were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. It may be concluded that sun irradiation may alter to a high extent the physicochemical properties of macromolecular organic matter, namely fulvic acids, released by kraft pulp mill effluents. After solar exposition, the aromaticity decreases, the aliphatic structures become more oxygenated, and the fulvic acids from the pulp mill effluent remaining in solution are more similar to aquatic fulvic acids from non polluted sites.  相似文献   

2.
The pulp and paper industry generates large volume of wastewater that adversely affects water resources. Lignin derived macromolecular compounds, similar to natural humic substances, are the main waste products in the pulp mill effluents. The UV-Vis and fluorescence spectroscopies were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. Solar irradiation of the solutions of these fulvic acids caused solution acidification and decay both in the UV-Vis absorbance and in the fluorescence. This decay was not the same for the whole spectra but pointed to the selective photodegradation of lignin typical structures. Furthermore, by sequential ultrafiltration it was found that during irradiation, the high-molecular weight fractions were destroyed and low-molecular-weight constituents, potentially more able to penetrate the cell membranes of living organisms were formed. Photodegradation of macromolecular organic matter from a kraft pulp mill effluent may be a key process occurring in natural waters that modifies the physicochemical properties of such effluents.  相似文献   

3.
R. M. Baxter  John Malysz 《Chemosphere》1992,24(12):1745-1753
Three preparations of humic material (a commercial humic acid and material isolated from soil and from water) were analysed by electrophoresis on polyacrylamide gradient gel slabs. All gave similar patterns showing four bands of material of molecular weights apparently ranging from a few hundred to about 20,000 as estimated by comparing their mobilities with those of protein markers. The high molecular weight material from bleached kraft mill effluent (BKME) showed similar patterns with the addition of completely unresolved material of molecular weight up to about 100,000.

Electrophoresis on polyacrylamide slabs may prove valuable for the study of humic substances and other ill-defined polymeric materials.  相似文献   


4.
5.
城市污水二级出水中溶解性有机物特性分析   总被引:2,自引:0,他引:2  
分别采用凝胶色谱、亲疏水性组分分离、荧光色谱等方法,研究了城市污水处理厂二级出水中溶解性有机物的分子量分布、亲疏水组分含量以及荧光光谱特性。结果表明,二级出水中疏水性组分较亲水性组分多,疏水性组分约占总有机物的64.3%,而亲水性组分占35.7%左右;二级出水及其不同亲/疏水组分中溶解性有机物分子量分布基本集中在4.5 kDa以下,其中弱疏水性组分和亲水性组分中主要为分子量小于1.5 kDa的有机物;二级出水溶解性有机物中含有腐殖酸类、富里酸类以及蛋白质类物质,其中含量以腐殖酸类为主。  相似文献   

6.
Unlike wastewater, pulp and paper mill effluents are generally severely deficient in bioavailable nitrogen and phosphorus. The influence of nitrogen and phosphorus limitations on steady-state or typical pulp and paper mill activated sludge floc properties and performance was studied using a bioreactor-fed synthetic raw mill effluent and seeded with mill activated sludge. Limitation of either nitrogen or phosphorus decreased growth, five-day biochemical oxygen demand, and suspended solids removal. Nitrogen limitation greatly enhanced activated sludge floc poly-beta3-hydroxybutyrate (PHB), but not carbohydrate or extracellular polymeric substances (EPS). In contrast, phosphorus limitation increased total floc carbohydrate and EPS, but not PHB. The flocs showed little ability to store either nitrogen or phosphorus. Nitrogen limitation, but not phosphorus limitation, produced much more negative net floc surface charge, increasing fines, while phosphorus limitation, but not nitrogen limitation, increased the floc bound water content and surface hydrophobicity and decreased fines.  相似文献   

7.
Lingbo L  Song Y  Congbi H  Guangbo S 《Chemosphere》2005,60(4):467-476
Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS.  相似文献   

8.
Toxicity of the combined effluent as well as effluents from different production units of BAPACO, a Vietnamese bleached kraft integrated pulp and paper mill, was studied using three ecotoxicological tests: Microtox, the micro-alga, Selenastrum capricornutum, and the duckweed, Lemna aequinoctialis. Physico-chemical characteristics of the effluents were also analyzed. Due to unstable operating conditions of the mill, a number of samples taken at different monitoring periods from each effluent were tested, in order to get statistically reliable ranges and averages of toxicity characteristics. For the mill combined effluent, it was found that the micro-algae were the most sensitive followed by Microtox bacteria, while duckweed was not sensitive. Microtox tests showed that the bleaching filtrate from the chlorination stage (C-stage) was the most toxic among all effluents in the mill. The combined effluent from the bleaching plant contributed the largest TEF (Toxicity Emission Factor) to the toxicity balance of the whole BAPACO combined effluent. A less-than-additive mode of toxicity was obtained. In spite of high pollution loads, e.g. BOD, COD, SS, to the Red River, the toxicity of the effluent was considered to be low. However, during periods of low river water sublethal toxic effects on the biota may be expected.  相似文献   

9.
The efficacy of ozonation and of photocatalysis processing in the treatment of pulp mill ECF (elementary chlorine free) bleaching and textile effluents was evaluated by determining total organic carbon reduction (TOC) and the toxicity. The chronic toxicity of the effluents was evaluated by the ability to inhibit the growth of algae Selenastrum capricornutum. Cultured hamster V79 fibroblasts were used to assess the cytotoxicity of effluents submitted to different detoxification processes. Two endpoints were measured in V79 cells: 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) reduction and neutral red uptake (NRU). Both treatment processes were able to reduce the TOC, although ozonization was less effective for pulp mill ECF bleaching. The pulp mill ECF bleaching and textile effluents reduced the growth of S. capricornutum by 39% and 27%, respectively. However, at the highest concentration tested, the textile effluents treated by photochemical process for 60 min showed increased cytotoxicity in V79 cells compared to the untreated effluent when assessed by the NRU and MTT reduction assays (increases of 30% and 40%, respectively). Pulp mill ECF bleaching effluent treated by ozonization had a similar cytotoxicity to that of untreated effluent in the NRU assay. In contrast, the MTT reduction assay indicated that effluents treated with ozone were around 20% more cytotoxic than untreated effluents. These results show that cultured fibroblasts may be useful for studying cellular responses to pollutants and may be included in tests to monitor the efficiency of effluent detoxification processes.  相似文献   

10.
V. Miikki  K. H  nninen  J. Knuutinen  J. Hy  tyl  inen  R. Al  n 《Chemosphere》1994,29(12):2609-2618
The changes induced by humification of anaerobically digested sewage sludge, source separated biowaste, and pulp mill biosludge were determined by extracting the fractions of bitumen and humic and fulvic acids from the samples of fresh and humified composts. In all cases, a distinct decrease in the amount of bitumen could be detected during humification. The amount of humic acids increased in sewage sludge and biowaste samples, but decreased in pulp mill biosludge sample during humification. The humic acids were degraded by CuO oxidation and the phenolic degradation products were analysed by reversed-phase high-performance liquid chromatography. The yield of these aromatic degradation products was in the range 0.9–2.0 % for each sample. The main phenolic degradation products were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, syringaldehyde, and acetovanillone. Two lignin dimers, dehydrodivanillin and dehydrodiacetovanillone, were also identified.  相似文献   

11.
Microwave (MW) irradiation, a less energy-intensive irradiation technique, was employed to promote the changes in physicochemical properties of soil organic matter (SOM). MW was irradiated to forest soils for 10 min. Then, the physical and chemical properties of the SOM were analyzed with UV absorbance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis, and size exclusion chromatography. Also, the SOM was fractionated into biopolymer, fulvic acid, and humic acid, and each fraction was analyzed quantitatively. These analyses revealed that the SOM became more aromatic and nonpolar, highly condensed, and macromolecular organic substances that possess a higher amount of functional groups found in highly humified substances than the original SOM as a result of the MW irradiation. The humification-like alteration of SOM property was attributable to the thermal cracking and to the radical reaction, particularly when the MW was irradiated along with activated carbon under the aerobic condition. The results of this study suggest that the artificial and enhanced property changes of SOM can be accomplished by MW irradiation on an engineering time scale, which can contribute to the successful soil and groundwater remediation practice.  相似文献   

12.
On three occasions between 1998 and 2000, freshwater mussels were collected by divers in Lake Memphremagog during the spring and transplanted to various locations in the St-Fran?ois River (Quebec, Canada). Mussel growth was monitored by comparing total weight and length at the beginning and end of the exposure period. In 1998, mussels were caged for 60 days at 10 stations, including locations receiving treated effluents from three pulp and paper mills. Overall, there was an apparent trend of increased mussel growth from upstream to downstream along the river. However, mussels caged downstream from the effluent discharge of a bleached kraft pulp and paper mill grew more slowly than those caged immediately upstream in the river. In 1999 and 2000, we further investigated the situation in the vicinity of this bleached kraft mill. The measurements again indicated that growth of mussels in the effluent plume from this mill was reduced in comparison to sites upstream. Overall, in terms of growth, the caged mussels responded both positively and negatively to different environmental conditions. Compared with other monitoring approaches used at these sites during the same period, the caged mussel experiment results were consistent with the trends observed with the benthic invertebrate survey but not with the trends observed for fish.  相似文献   

13.
Natural organic polyelectrolytes (humic and fulvic acids) and their metal complexes were removed by adsorption onto xonotlite. The removal percentages of humic and fulvic acids by xonotlite were approximately 80% and 30%, respectively. Humic acid removal from solution by adsorption onto xonotlite took place more readily than fulvic acid removal. The molecular weight distributions of the humic substances remaining in solution after adsorption with the xonotlite were measured with size exclusion chromatography. A comparison of molecular weight distributions demonstrated conclusively that large molecular weight components were adsorbed preferentially, indicating that adsorption efficiency depends on the number of functional groups of humic substances. Furthermore, the surface topography of the adsorbent was observed before and after adsorption by scanning electron microscopy. The calculated heat of adsorption was of 330 kJ mol(-1) which was evaluated from the Clapeyron-Clausius equation. Therefore, the adsorption type can be considered chemical. Since xonotlite can be easily synthesized and obtained at low cost, the adsorption method of humic and fulvic acids is superior to their precipitation.  相似文献   

14.

Background, aim and scope  

Pulp and paper mills generate a plethora of pollutants depending upon the type of pulping process. Efforts to mitigate the environmental impact of such effluents have been made by developing more effective biological treatment systems in terms of biochemical oxygen demand, chemical oxygen demand, colour and lignin content. This study is the first that reports an evaluation of the effects of a tertiary treatment by fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium and Rhizopus oryzae) on individual organic compounds of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (final effluent).  相似文献   

15.
In this review, special interest was devoted to provide information on the surrogate parameters expressing both quality and quantity of organic matter for the understanding of the photocatalytic oxidation of humic substances. Detailed investigation was directed to the application of photocatalysis with reference to source, origin and modeling of organic matter. Evaluation of the literature findings emphasizes that organic matter taken from natural waters are site specific and should be characterized in detail to be comparable to other studies. Taking into account the photocatalytic degradation studies of natural organic matter, humic substances, humic acids and fulvic acids in slurry systems, a procedure could be deduced that depends on the selection of a standard model sample with a representative concentration, selection of a standard photocatalyst and dose (e.g., TiO2 Degussa P-25, 0.25 mg mL−1), application of standardized reaction conditions such as light intensity, pH, and temperature. Furthermore, standardized filtration step avoiding organic leaching and selection of the most suitable analytical parameter are the crucial points to be considered. The use of such a protocol could form a basis for the determination of “relative degradation efficiency” of any sample containing natural organic matter, humic substances, humic acids and fulvic acids regardless of dependency on source and origin.  相似文献   

16.
Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62 cf. 1.47 kg m−3) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240 mg L−1. The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58 mg L−1), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534 g mol−1) and aromaticity (5.35 vs. 4.67 L mg−1 m−1) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0 L mg−1 m−1 in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50 g mol−1 while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.  相似文献   

17.
We studied the binding of Cu(II) to humic acids and fulvic acids extracted from two horizons of an ombrotrophic peat bog by metal titration experiments at pH 4.5, 5.0, 5.5, and 6.0 and 0.1 M KNO3 ionic strength. Free metal ion concentrations in solution were measured using an ion selective electrode. The amounts of base required to maintain constant pH conditions were recorded and used to calculate H+/Cu2+ exchange ratios. The amount of Cu(II) bound to the humic fractions was greater than the amount bound to the fulvic fractions and only at the highest concentrations of metal ion the amount of Cu(II) sorbed by both fractions became equal. The proton to metal ion exchange ratios are similar for all humic substances, with values ranging from 1.0 to 2.0, and decreasing with increased pH. The amount of Cu(II) bound is practically independent of the horizon from which the sample was extracted. The results indicate that the humic substances show similar cation binding behaviour, despite the differences in chemical composition. The copper binding data are quantitatively described with the NICA-Donnan model, which allows to characterize only the carboxylic type binding sites. The values of the binding constants are higher for the humic acids than for the fulvic acids.  相似文献   

18.
The types of treatment most commonly used by pulp mills are biological treatments in combination with sedimentation or coagulation/flocculation as pretreatment. The main issues faced by these types of treatment are low efficiency in the removal of organic matter and the loss of aggregate value for the recovered fiber. Therefore, this study aims to evaluate the use of microfiltration (MF) combined with a membrane bioreactor (MBR) for the treatment of bleach pulp mill effluents. The results showed that the use of the MF-MBR system was an excellent alternative for the treatment of bleach pulp mill effluents with an average COD removal of 95%. The microfiltration allowed the recovery of fibers, which can be returned to the production process without losing economic value, and produced a better quality effluent for further treatment in the MBR. The MBR presented high efficiency removal of organic matter.  相似文献   

19.
The influence of dissolved humic substances on the transport of (4-chloro-2-methylphenoxy) acetic acid (MCPA) in a sandy soil with a low organic carbon content was studied in a column experiment. Soil columns were eluted with aqueous solutions containing different fractions of humic substances. More than 70% of the applied compound was found in the leachate in all sandy soil experiments, but distinct differences were obtained depending on the composition of the eluent. The addition of both humic and fulvic acids to the eluent affected the leaching behaviour of MCPA. While the presence of humic acids increased and accelerated the movement of MCPA in the investigated sandy soil, fulvic acids caused the opposite effect: increased retention was observed relative to the control. We concluded that a possible carrier transport or retention strongly depends on the composition of the dissolved organic matter. Thus, changes in the composition of dissolved organic matter may affect MCPA movement into deeper soil layers.  相似文献   

20.
The chemical composition of lipophilic extractives from process waters throughout a totally chlorine free (TCF) bleaching sequence after kraft pulping of eucalypt wood has been studied. These compounds are among the most problematic wood constituents for both TCF and zero liquid effluent (ZLE) processes, since they tend to accumulate in circuits resulting in the formation of the so-called pitch deposits causing serious problems in the pulp and paper industry. Pitch deposits collected at different parts of the pulp mill were also characterized and their composition compared with that of lipophilic compounds in process waters and Eucalyptus globulus wood. The identification of these compounds from process waters, wood and pitch deposits was performed by gas chromatography and gas chromatography-mass spectrometry using short- and medium-length high temperature capillary columns. Sterols, sterol esters, steroid ketones and steroid hydrocarbons were the main compounds identified. These chemical species arise from eucalypt wood extractives that survive the pulping and are released from pulp into the process waters during the bleaching process. Finally, they can deposit in pulp and on different parts of the mill or remain suspended in process waters being discharged in effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号