首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL−1 for TCE and 0.25 g mL−1 for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms.  相似文献   

2.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

3.
Personal exposures and microenvironmental concentrations of benzene were measured in the residential indoor, residential outdoor and workplace environments for 201 participants in Helsinki, Finland, as a component of the EXPOLIS-Helsinki study. Median benzene personal exposures were 2.47 (arithmetic standard deviation (ASD)=1.62) μg m−3 for non-smokers, 2.89 (ASD=3.26) μg m−3 for those exposed to environmental tobacco smoke in any microenvironment and 3.08 (ASD=10.04) μg m−3 for active smokers. Median residential indoor benzene concentrations were 3.14 (ASD=1.51) μg m−3 and 1.87 (ASD=1.93) μg m−3 for environments with and without tobacco smoke, respectively. Median residential outdoor benzene concentrations were 1.51 (ASD=1.11) μg m−3 and median workplace benzene concentrations were 3.58 (ASD=1.96) μg m−3 and 2.13 (ASD=1.49) μg m−3 for environments with and without tobacco smoke, respectively. Multiple step-wise regression identified indoor benzene concentrations as the strongest predictor for personal benzene exposures of those not exposed to tobacco smoke, followed sequentially by time spent in a car, time in the indoor environment, indoor workplace concentrations and time in the home workshop. Relationships between indoor and outdoor microenvironment concentrations and personal exposures showed considerable variation between seasons, due to differences in ventilation patterns of homes in these northern latitudes. Automobile use-related activities were significantly associated with elevated benzene levels in personal and indoor measurements when tobacco smoke was not present, which demonstrates the importance of personal measurements in the assessment of exposure to benzene.  相似文献   

4.
As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m−3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m−3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2–1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m−3 and a maximum value of ∼550 μg m−3 were found. On average, the participating volunteers drove their car for 45 min day−1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the car during the 14-day sampling period has only a small effect on the personal exposure level.  相似文献   

5.
《Chemosphere》2008,70(11):1790-1797
This laboratory study explores the effect of growth substrate concentration on the anaerobic degradation of trichloroethylene (TCE) in sand packed columns. In all columns the growth substrate rapidly degraded to gas, that formed a separate phase. Biomass accumulated in the 0–4.8 cm section of the columns in proportion to the influent growth substrate concentration and biomass concentrations in the remaining sections of all columns were similar to the column receiving the lowest substrate concentration. Increases in growth substrate concentration up to 3030 mg-COD l−1 promoted TCE degradation, but a further increase to 14 300 mg-COD l−1 reduced the amount of TCE completely dechlorinated but did not affect the production of chlorinated TCE intermediates. The mathematical model developed here satisfactorily described the enhancement in TCE dehalogenation for substrate concentration up to 3030 mg-COD l−1; reproducing TCE dehalogenation for 14 300 mg-COD l−1 required that the moisture content used in simulation be lowered to 0.1. The study shows that volatilization of TCE can be significant and volatilization losses should be taken into account when anaerobic activity in in-situ bioremediation applications is stimulated via addition of growth substrates. An implication of the modeling simulations is that maintaining a lower, but uniform, substrate concentration over the contaminated region may lead to faster contaminant degradation.  相似文献   

6.
Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C6H6), toluene (methylbenzene, C7H8), the C8H10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C9H12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C10H14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3–20.8 μg m−3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS).Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m−3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10−3 g s−1 m−2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher.Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg gice−1 (toluene, ethylbenzene, xylenes) and 125 pg gice−1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg gice−1 at gas concentrations of 10.3–10.7 μg m−3 calculated at 295 K. Uptake coefficients (K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of Gibbs energy (ΔG) were between −4.5 and 2.4 kJ mol−1 and decreased as temperatures were lowered. From the uptake experiments, the uptake enthalpy (ΔH) could be determined between −70.6 and −33.9 kJ mol−1. The uptake entropy (ΔS) was between −281.3 and −126.8 J mol−1 K−1. Values of ΔH and ΔS were rather similar for 4-ethlytoluene, 1,3,5-TMB and tert.-butylbenzene, whereas 1,2,3-TMB showed much higher values.  相似文献   

7.
Using the novel on-line proton transfer reaction mass spectrometry (PTR-MS) technique, atmospheric concentrations of benzene, toluene, xylenes, and C9-benzenes were measured in Caracas (urban), Altos de Pipe (sub-urban), Calabozo (rural) and Parupa (remote), during various campaigns in 1999 and 2000.Average daytime mixing ratios measured in Caracas are 1.1, 3.2, 3.7, and 2.7 nmol/mol for benzene, toluene, xylenes, and C9-benzenes. At the sub-urban site, located only few km from Caracas, relatively low levels (∼20% of the levels measured in Caracas) of these aromatic hydrocarbons were observed.At the rural site during the dry season, higher concentrations of benzene (0.15 nmol/mol) were recorded, whereas those of toluene (0.08 nmol/mol) were lower during that time. The aromatic hydrocarbon ratios in the wet season (benzene: 0.08 nmol/mol; toluene: 0.09 nmol/mol) are consistent with an aged urban plume, whereas biomass burning emissions dominate during the dry season. From rural and urban [benzene]/[toluene] ratios a mean HO concentration of 2.6×106 molecules/cm3 was estimated during the wet season. This value must be considered an overestimate because it does not account for background concentrations which are likely for benzene and toluene.At the remote “La Gran Sabana” region (Parupa) very low mixing ratios (0.031 and 0.015 nmol/mol for benzene and toluene) are showing the pristine region to be unaffected by local sources. From the [benzene]/[toluene] ratio we deduced, that “urban” air arriving from the coastline (350 km) is likely mixed with air containing some background of benzene and toluene.Urban emissions (automobiles) should be the major source of aromatic compounds, however, during the dry season biomass burning seems to make an important contribution.  相似文献   

8.
Benzene, toluene, sulphur dioxide, ozone and nitrogen dioxide were measured at a mean level of 13.5 m above ground in a narrow, four-lane street canyon (height 30 m, width 20 m) in Thessaloniki, Greece during the period January–July 1997 by means of a commercial differential optical absorption spectrometer (OPSIS DOAS). Primary pollutant levels were found to be 2.5–4.4 times higher during the cold part of the year than during the warm part of the year, the winter/summer ratio increasing with the reaction rate constant with OH for each of the measured species. Ozone, on the other hand, exhibited a winter/summer ratio of 0.36. NO2 originates from both primary and secondary sources; its winter/summer concentration ratio of 1.4 lies, therefore, between those of primary pollutants and ozone. Pollution levels were influenced considerably by wind speed, while for the street canyon under study wind direction did not influence pollutant levels considerably. While primary pollution was found to decrease with increasing wind speed, ozone increased. Benzene mean levels during the study period were around 6 ppb and hence much higher than the EU annual limit value of 5 μg m−3 (1.44 ppb at STP). Toluene mean levels were around 14 ppb and hence also several times above the WHO recommendation of 2 ppb for 24 h. The apportionment of traffic emissions in four time zones used in most inventories in urban airshed models was tested using benzene and toluene measurements at low (<1 m s−1) wind speeds. The agreement between model emissions and calculated emissions apportionment into the four time zones was good, except for Zone D (23:00–1:59), where model inventory emissions were somewhat too low.  相似文献   

9.
It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296–535 μg cig−1), toluene (541–1003 μg cig−1), styrene (90–162 μg cig−1), 2-dimethyl furan (71–244 μg cig−1), naphthalene (15–18 μg cig−1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests.  相似文献   

10.
Hourly concentrations of benzene, toluene, ethylbenzene, m,p-xylenes, and o-xylene (BTEX) plus CO, NOx, SO2 were monitored at roadsides simultaneously with the traffic volume during the dry season of 2004, in Hanoi, Vietnam. The selected three streets included Truong Chinh (TC) with high traffic volume, Dien Bien Phu (DBP) with low traffic volume, and Nguyen Trai (NT) with high traffic volume running through an industrial estate. BTEX were sampled by SKC charcoal tubes and analyzed by GC–FID. Geometric means of hourly benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene are, respectively, 65, 62, 15, 43, and 22 μg m−3 in TC street; 30, 38, 9, 26, and 13 μg m−3 in DBP street; and 123, 87, 24, 56, and 30 μg m−3 in NT street. Levels of other gaseous pollutants including CO, NOx, and SO2, measured by automatic instruments, were low and not exceeding the Vietnam national ambient air quality standards. BTEX levels were comparatively analyzed for different downwind distances (3–50 m) from the street, between peak hours and off-peak hours, as well as between weekdays and weekend. Results of principal component analysis suggest that the gaseous pollutants are associated with different vehicle types.  相似文献   

11.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

12.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

13.
Atmospheric concentrations of and personal exposure to benzene have been measured in four French metropolitan areas for 210 subjects over two seasons. Half of the volunteers were 6–13-year-old children. The adult subjects were non-smokers, not occupationally exposed and they live and work in the monitored areas. Measurements were performed using diffusive samplers followed by GC-FID analysis. The average values for ambient air concentrations (μg m−3) were: Rouen: 1.5; Île de France (Paris area): 1.6; Grenoble: 2.3 and Strasbourg: 2.6, showing that benzene concentrations in the ambient air of the four cities satisfy the requirements of the European Directive 2000/69EC of the European Parliament which stipulates a limit value of 5 μg m−3. However, the 48 h exposures measured were found to be between 2.7 and 3.5 times higher than ambient air concentrations. As a consequence, 60% of the subjects investigated, including children, were exposed to concentrations higher than the ambient air limit value. This work confirms that air monitoring data collected by fixed stations should be used with caution when assessing population exposure to benzene, especially given the influence of indoor sources and other polluted microenvironments where people spend part of their time.  相似文献   

14.
Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg−1 (of dry wood burned)), carbon monoxide (CO) (120 g kg−1) and fine particle mass (PM1) (2.7 g kg−1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9–9 g kg−1 TVOC, 28–68 g kg−1 CO and 0.6–1.6 g kg−1 PM1. The emission of 12 PAHs (PAH12) from the sauna stove was 164 mg kg−1 and consisted mainly of PAHs with four benzene rings in their structure. PAH12 emission from other appliances was, on average, 21 mg kg−1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.  相似文献   

15.
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200–350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm−3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t−1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41–3700 μg ITEQ t−1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91–414 μg kg−1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018–0.5 μg Nm−3) were below the Italian limit of 10 μg Nm−3.  相似文献   

16.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

17.
The benzene emission characteristics of six gasoline-driven EURO-2 vehicles, three passenger cars and three light duty vehicles, have been determined by time-resolved chemical ionization mass spectrometry. Aliquots of the exhaust gas were monitored pre- and post-catalyst with two independently operating mass spectrometers. Each vehicle was driven with two different fuels having benzene contents of 1 and 2 vol%. Seven driving cycles—including the European (EDC) and the US (FTP-75) driving cycle—with a total driving time of about 8800 s were studied. Herein, we discuss the average emission characteristics of the entire fleet at transient driving in the velocity range of 0–150 km h−1. The conversion efficiencies of the involved catalytic systems were deduced from the pre- and post-catalyst data. On average, the vehicles showed optimal benzene conversion efficiencies (>95%) in the velocity range of 30–90 km h−1. When driving below 20 or above 100 km h−1 reduced benzene conversion was found (80–82%). No benzene conversion was observed when driving above 130 km h−1. In contrast, the post-catalyst benzene emissions exceeded those of the untreated exhaust gas by 19–49%. Thus on an average, benzene was formed across the catalysts under these conditions. In addition, the influence of the benzene content of the gasoline on the tail-pipe emissions was also studied. The use of the gasoline with 1 vol% benzene instead of 2 vol% induced a 20–30% reduction of the post-catalyst emissions when driving below 50 km h−1. The fuel effect became smaller above 100 km h−1 and was even negative at high engine load (>130 km h−1). Thus under these conditions, when benzene is formed across the catalyst, the amount of the emitted benzene was independent of the benzene level of the fuel.  相似文献   

18.
Regional haze from biomass burning in SE Asia is a recurring air pollution phenomenon with a potential impact on the health of several hundred million people. Air quality data in Brunei Darussalam during the 1998 haze episode revealed that only particulate matter is a significant pollutant. The WHO guideline of 70 μg m−3 for PM10 (24 h average) was exceeded on 54 days during the haze episode which lasted from 1 February to 30 April 1998. Concentrations of SO2, NO2, and O3 were all below WHO guidelines and the 8 h guideline for CO was exceeded on only seven occasions. Average daily PM10 concentrations were below 450 μg m−3 but concentrations greater than 600 μg m−3 persisted for several hours at a time and total exposure to such high concentrations could add up to several days over the course of a haze episode. Airborne particles exhibited diurnal variation, typically rising through the night to very high levels in the early morning and thereafter decreasing due largely to meteorological factors. The pollutant standards index (PSI), widely used to report urban air quality, may not be suitable for haze from forest fires as it does not take into account short-term exposure to extremely high particle concentrations of up to 1 mg m−3.  相似文献   

19.
This paper evaluates the role of Saharan dust advection in the exceeding of the PM10 thresholds in the city of Rome, Italy. To this purpose, a series of observations and model forecasts recorded in the year 2001 are analysed and discussed. Lidar profiles collected over 168 days of the year are employed to both assess the presence and magnitude of Saharan dust layers over the city and to evaluate the depth of the planetary boundary layer. Backtrajectories are used to verify the Saharan origin of the lidar-sounded air masses. Model predictions of the presence of Saharan dust over the area are employed to fill the time gaps between lidar observations. PM10 and carbon monoxide records of both a city background (Villa Ada) and a heavy traffic station (Magna Grecia) are cross-analysed with the dust events record and meteorological data. The analysis shows that: (1) Saharan dust was advected over Rome on about 30% of the days of 2001; (2) mean contribution of Saharan dust transport events to daily PM10 levels was of the order of 20 μg m−3; (3) at the urban background station of Villa Ada, the Saharan contribution caused the surpassing of the maximum number of days in excess of 50 μg m−3 fixed by the current legislation (35 per year). Conversely, at the heavy traffic station of Magna Grecia the Saharan contribution was not determinant at causing the observed large exceeding of that limit, as well as of the maximum yearly average of 40 μg m−3; (4) 25% of the Saharan advection days (of the order of 100/year at Rome) led to a PM10 increase >30 μg m−3, 4% caused an increase >50 μg m−3, thus leading on their own to surpassing the 50 μg m−3 daily limit.  相似文献   

20.
《Chemosphere》2013,90(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86–1563 ng L−1), while quinolones were prominent in sediments (65.5–1166 μg kg−1) and aquatic plants (8.37–6532 μg kg−1). Quinolones (17.8–167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号