首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Activated (AC-PW) and non-activated (C-PW) carbonaceous materials were prepared from the Brazilian-pine fruit shell (Araucaria angustifolia) and tested as adsorbents for the removal of reactive orange 16 dye (RO-16) from aqueous effluents. The effects of shaking time, adsorbent dosage and pH on the adsorption capacity were studied. RO-16 uptake was favorable at pH values ranging from 2.0 to 3.0 and from 2.0 to 7.0 for C-PW and AC-PW, respectively. The contact time required to obtain the equilibrium using C-PW and AC-PW as adsorbents was 5 and 4 h at 298 K, respectively. The fractionary-order kinetic model provided the best fit to experimental data compared with other models. Equilibrium data were better fit to the Sips isotherm model using C-PW and AC-PW as adsorbents. The enthalpy and entropy of adsorption of RO-16 were obtained from adsorption experiments ranging from 298 to 323 K.  相似文献   

2.
3.
Removal of mercury from aqueous solutions using activated carbon prepared from Ceiba pentandra hulls, Phaseolus aureus hulls and Cicer arietinum waste was investigated. The influence of various parameters such as effect of pH, contact time, initial metal ion concentration and adsorbent dose for the removal of mercury was studied using a batch process. The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic models and the equilibrium adsorption data fit the Freundlich isotherm model well. The prepared adsorbents ACCPH, ACPAH and ACCAW had removal capacities of 25.88 mg/g, 23.66 mg/g and 22.88 mg/g, respectively, at an initial Hg(II) concentration of 40 mg/L. The order of Hg(II) removal capacities of these three adsorbents was ACCPH > ACPAH > ACCAW. The adsorption behavior of the activated carbon is explained on the basis of its chemical nature. The feasibility of regeneration of spent activated carbon adsorbents for recovery of Hg(II) and reuse of the adsorbent was determined using HCl solution.  相似文献   

4.
Shaped zeolite 13X adsorbent with kaolin as binder was hydrothermally modified in sodium hydroxide solution to improve its adsorption performance. The characterization of the product by XRD, N2 adsorption–desorption and water vapour adsorption displayed that kaolin component in zeolite adsorbent can be converted into zeolite during the alkali treatment, resulting in the modified adsorbent consisting entirely of effectual adsorption composition. Compared with the unmodified adsorbent, the modified adsorbent exhibited higher adsorption capacity and uptake rate for carbon dioxide, because of the increase of effective adsorption surface and the decrease of diffusion resistance owing to conversion of kaolin binder into zeolite. The model parameters of isotherms and the isosteric heats calculated by the Clausius–Clapeyron equation for CO2 adsorption showed the stronger interaction of adsorbate–adsorbent and the higher degree of heterogeneity of adsorption centers in modified than unmodified adsorbents.  相似文献   

5.
The use of low-cost adsorbents was investigated as a replacement for current costly methods of removing metals from aqueous solution. Removal of copper (II) from aqueous solution by different adsorbents such as shells of lentil (LS), wheat (WS), and rice (RS) was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cu (II) on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. The maximum adsorption capacities for Cu (II) on LS, WS and RS adsorbents at 293, 313 and 333 K temperature were found to be 8.977, 9.510, and 9.588; 7.391, 16.077, and 17.422; 1.854, 2.314, and 2.954 mg g(-1), respectively. The thermodynamic parameters such as free energy (delta G0), enthalpy (delta H0) and entropy changes (delta S0) for the adsorption of Cu (II) were computed to predict the nature of adsorption process. The kinetics and the factors controlling the adsorption process were also studied. Locally available adsorbents were found to be low-cost and promising for the removal of Cu (II) from aqueous solution.  相似文献   

6.
Phenol and substituted phenols are toxic organic pollutants present in tannery waste streams. Environmental legislation defines the maximum discharge limit to be 5–50 ppm of total phenols in sewers. Thus the efforts to develop new efficient methods to remove phenolic compounds from wastewater are of primary concern. The present work aims at the use of a modified green macro alga (Caulerpa scalpelliformis) as a biosorbent for the removal of phenolic compounds from the post-tanning sectional stream. The effects of initial phenol concentration, contact time, temperature and initial pH of the solution on the biosorption potential of macro algal biomass have been investigated. Biosorption of phenol by modified green macro algae is best described by the Langmuir adsorption isotherm model. Biosorption kinetics of phenol onto modified green macro algal biomass were best described by a pseudo second order model. The maximum uptake capacity was found to be 20 mg of phenol per gram of green macro algae. A Boyd plot confirmed the external mass transfer as the slowest step involved in the biosorption process. The average effective diffusion coefficient was found to be 1.44 × 10−9 cm2/s. Thermodynamic studies confirmed the biosorption process to be exothermic.  相似文献   

7.
Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral.  相似文献   

8.
Experiments have been conducted to examine the liquid-phase adsorption of phenol from water by silica gel, HiSiv 3000, activated alumina, activated carbon, Filtrasorb-400, and HiSiv 1000. Experiments were carried out for the analysis of adsorption equilibrium capacities and kinetics. The adsorption isotherm model of the Langmuir-Freundlich type was the best to describe adsorption equilibrium data for phenol for the adsorbents studied. Results of kinetic experiments indicated that HiSiv 1000 had the highest rate of adsorption among the adsorbents studied and therefore more detailed studies were carried out with this adsorbent. The influence of particle size, temperature, and thermal regeneration on adsorption of phenol by HiSiv 1000 was evaluated. From particle size experiments it appeared that adsorption capacity of HiSiv 1000 did not change by changing the particle size, but the rate of adsorption decreased considerably by increasing the particle size. The effect of temperature on adsorption was studied by determining equilibrium isotherms for HiSiv 1000 at 25, 40, and 55 degrees C. The results showed that adsorption capacity decreased with increasing temperature. Thermal regeneration of HiSiv 1000 was performed at 360 degrees C. It was observed that adsorption capacity of HiSiv 1000 did not change after 14 regeneration cycles. Equilibrium experiments showed that the adsorption capacities of activated carbon and Filtrasorb-400 were several times higher than that of HiSiv 1000.  相似文献   

9.
In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LEC1 and LEC2) adsorbents. The adsorbents (LE, LEC1 and LEC2) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LEC1 and LEC2 was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins–Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH = 2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LEC1 and LEC2 respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LEC1 and LEC2 could be employed as adsorbents for the removal of direct blue dye from aqueous solutions.  相似文献   

10.
As a large and diverse group of secondary metabolites, phenolic compounds are one of the most common chemical pollutants present in water resources. these compounds can have toxic effects on ecosystems and humans. Therefore, their removal from water sources appears to be of great importance. In this study, a magnetic graphene oxide (MGO) photocatalyst was synthesized and used to remove phenol from water. The fabricated GO magnetic nanocomposites were determined by SEM and FTIR techniques. Afterward, these nanoparticles were used to remove phenol from aquatic media considering different operational parameters, including pH of the solution, initial concentration of phenol, contact time, and adsorbent dosage. The results showed that the magnetized GO nanoparticles could remove 90.83% of phenol molecules under the optimal conditions of solution pH = 3.0, initial phenol concentration of 20 mg/L, adsorbent concentration of 300 mg/L, and contact time of 120 min. additionally have compared the results of UV, Fe3O4/GO, and Fe3O4/GO/UV on the removal of phenol under optimum conditions. Accordingly, the phenol removal efficiencies for UV alone, Fe3O4/GO, and Fe3O4/GO/UV were obtained at 4.5, 65.73, and 90.83%, respectively. Based on the findings, the prepared magnetic GO nanoparticles have extended capabilities such as easy and rapid separation from sample and high potential in removing phenolic compounds, so, it can be introduced as an appropriate adsorbent for removal of this pollutant from water and wastewater.  相似文献   

11.
The adsorption of methylene blue onto bentonite in a batch adsorber has been studied. Three kinetic models, the intraparticle diffusion equation and the pseudo first and second order equations, were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption of methylene blue onto bentonite could be described by the pseudo second order equation. Adsorption of methylene blue onto bentonite followed the Langmuir isotherm. A model has been developed for the design of a two stage batch adsorber based on pseudo second order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total contact time to achieve a specified amount of methylene blue removal using a fixed mass of adsorbent. The results of two stage batch adsorber design studies showed that the required times for specified amounts of methylene blue removal significantly decreased. This design is particularly suitable for low-cost adsorbents/adsorption systems when minimising contact time is a major operational and design criterion and a significant volume of effluent needs to be treated in the minimum amount of time.  相似文献   

12.
In this article, the technical feasibility of the use of activated carbon, synthetic resins, and various low-cost natural adsorbents for the removal of phenol and its derivatives from contaminated water has been reviewed. Instead of using commercial activated carbon and synthetic resins, researchers have worked on inexpensive materials such as coal fly ash, sludge, biomass, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The comparison of their removal performance with that of activated carbon and synthetic resins is presented in this study. From our survey of about 100 papers, low-cost adsorbents have demonstrated outstanding removal capabilities for phenol and its derivatives compared to activated carbons. Adsorbents that stand out for high adsorption capacities are coal-reject, residual coal treated with H3PO4, dried activated sludge, red mud, and cetyltrimethylammonium bromide-modified montmorillonite. Of these synthetic resins, HiSiv 1000 and IRA-420 display high adsorption capacity of phenol and XAD-4 has good adsorption capability for 2-nitrophenol. These polymeric adsorbents are suitable for industrial effluents containing phenol and its derivatives as mentioned previously. It should be noted that the adsorption capacities of the adsorbents presented here vary significantly depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentrations of solutes.  相似文献   

13.
A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.  相似文献   

14.
In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 °C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1–3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 × 10−3, 0.818 × 10−3, 0.557 × 10−3 and 0.811 × 10−3 g/mg min−1 for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.  相似文献   

15.
A laboratory study was conducted to investigate the efficiency of hydroxyapatite (HAP) towards removal of nitrate from synthetic nitrate solution. In the present research HAP synthesized from egg-shell was characterized using SEM, XRD, FTIR and TGA–DSC. The removal of nitrate was 96% under neutral conditions, using 0.3 g of adsorbent in 100 mL of nitrate solution having an initial concentration of 100 mg/L. An adsorption kinetic study revealed that the adsorption process followed first order kinetics. Adsorption data were fitted to a linearly transformed Langmuir isotherm with correlation coefficient (R2) > 0.98. Thermodynamic parameters were also calculated to study the effect of temperature on the removal process. In order to understand the adsorption type, equilibrium data were tested with the Dubinin–Radushkevich isotherm. The process was rapid and equilibrium was established within the first 40 min.  相似文献   

16.
Removal of chromium (VI) from aqueous solution using walnut hull   总被引:2,自引:0,他引:2  
In this study, removal of chromium (VI) from aqueous solution by walnut hull (a local low-cost adsorbent) was studied. The extent of adsorption was investigated as a function of solution pH, contact time, adsorbent and adsorbate concentration, reaction temperature and supporting electrolyte (sodium chloride). The Cr (VI) removal was pH-dependent, reaching a maximum (97.3%) at pH 1.0. The kinetic experimental data were fitted to the first-order, modified Freundlich, intraparticle diffusion and Elovich models and the corresponding parameters were obtained. A 102.78 kJ/mol Ea (activation energy) for the reaction of chromium (VI) adsorption onto walnut indicated that the rate-limiting step in this case might be a chemically controlled process. Both the Langmuir and Freundlich isotherms were suitable for describing the biosorption of chromium (VI) onto walnut hull. The uptake of chromium (VI) per weight of adsorbent increased with increasing initial chromium (VI) concentration up to 240-480 mg/L, and decreased sharply with increasing adsorbent concentration ranging from 1.0 to 5.0 g/L. An increase in sodium chloride (as supporting electrolyte) concentration was found to induce a negative effect while an increase in temperature was found to give rise to a positive effect on the chromium (VI) adsorption process. Compared to the various other adsorbents reported in the literature, the walnut hull in this study shows very good promise for practical applicability.  相似文献   

17.
Review of fluoride removal from drinking water   总被引:9,自引:0,他引:9  
Fluoride in drinking water has a profound effect on teeth and bones. Up to a small level (1–1.5 mg/L) this strengthens the enamel. Concentrations in the range of 1.5–4 mg/L result in dental fluorosis whereas with prolonged exposure at still higher fluoride concentrations (4–10 mg/L) dental fluorosis progresses to skeletal fluorosis. High fluoride concentrations in groundwater, up to more than 30 mg/L, occur widely, in many parts of the world. This review article is aimed at providing precise information on efforts made by various researchers in the field of fluoride removal for drinking water. The fluoride removal has been broadly divided in two sections dealing with membrane and adsorption techniques. Under the membrane techniques reverse osmosis, nanofiltration, dialysis and electro-dialysis have been discussed. Adsorption, which is a conventional technique, deals with adsorbents such as: alumina/aluminium based materials, clays and soils, calcium based minerals, synthetic compounds and carbon based materials. Studies on fluoride removal from aqueous solutions using various reversed zeolites, modified zeolites and ion exchange resins based on cross-linked polystyrene are reviewed. During the last few years, layered double oxides have been of interest as adsorbents for fluoride removal. Such recent developments have been briefly discussed.  相似文献   

18.
The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA.  相似文献   

19.
Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.  相似文献   

20.
Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (ΔH°), Gibbs free energy (ΔG°) and entropy (ΔS°) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号