首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kannan K  Perrotta E 《Chemosphere》2008,71(4):649-655
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in livers of 81 adult female sea otters collected along the California coast in 1992-2002. Concentrations of summation operatorPAHs in livers of sea otters were in the range of 588-17400ng/g lipid wt (mean: 3880ng/g, lipid wt). On a wet weight basis, the concentrations ranged from 17 to 1430ng/g (mean: 146ng/g). Overall, di- and tri-cyclic aromatic hydrocarbons, namely, naphthalene, fluorene, phenanthrene/anthracene, and acenaphthylene, were the predominant compounds found in the livers. Although petroleum-related sources appear to be the major contributors to PAH exposure in sea otters, exposure sources varied by geographical sub-regions. Dibenz[a,h]anthracene was found to comprise a significant proportion of the summation operatorPAH concentrations in sea otters from the northern sub-region of the study area. No significant difference existed in the concentrations of summation operatorPAHs among sea otters that died from infectious diseases, emaciation, and noninfectious causes. Concentrations of summation operatorPAHs in livers of sea otters decreased significantly from 1992 to 2002. Because of the rapid metabolism of PAHs in marine mammals such as sea otters, further studies examining the association of PAHs with health effects should determine hydroxylated metabolites in livers.  相似文献   

2.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

3.
Remobilization of 16 polycyclic aromatic hydrocarbons (PAHs) during sediment resuspension was investigated using a particle entrainment simulator at shear stress from 0.2 to 0.5Nm(-2), typical of the energy levels present in many tidally driven aquatic environments. The results suggested that desorption from the entrained particles was the primary source of dissolved PAHs. summation operatorPAHs concentrations in particles on volume normalization increased about four times. However, on mass weight basis, summation operatorPAHs concentrations decreased from 6039.74+/-138.28microgkg(-1) to 1665.39+/-112.26microgkg(-1). The same trend was observed for individual PAHs. Dissolved concentrations of PAHs demonstrated significant differences depending on molecular weight and applied shear. The distribution of PAHs between particle and water phase suggested that for three-ring PAHs, the amounts of PAHs in particles were higher than the predicted values during our experiments. This might be due to presence of another active sorbent.  相似文献   

4.
Polycyclic aromatic hydrocarbons in the sediments of the South China Sea   总被引:22,自引:0,他引:22  
Sixteen sediment samples, collected from the South China Sea, were analyzed for 11 parent polycyclic aromatic hydrocarbons (PAHs) using gas chromatography and gas chromatography-mass spectrometry. Total concentrations of the 11 PAHs studied in the sediments ranged from 24.7 to 275.4 ng/g with a mean of 145.9 ng/g dry sediment. PAH concentrations displayed a consistent distribution trend with the sediment organic carbon content. The linear regression analysis showed that the total concentration of PAHs in the sediment was significantly correlated to the sediment organic carbon content with a correlation coefficient of 0.735 (n=16). Special PAH compound ratios, such as phenanthrene/anthracene and fluoranthene/pyrene, were calculated to evaluate the relative importance of different origins. The collected data showed that pyrolytic input from anthropogenic combustion processes was predominant at almost all the stations investigated. Only one station, located in the proximity of oil wells, appeared to be contaminated predominantly by petrogenic input. Three anthropogenic PAHs, i.e. pyrene, benzo[a]pyrene and benzo[e]pyrene, exhibited similar distribution patterns in the studied area, implying that these compounds possess identical sources. However, perylene did not entirely follow the distribution trend of the three PAHs, suggesting that the sediment perylene probably derived from other sources such as in situ biogenic origins. Dibenzothiophene, a sulfur heterocyclic aromatic compound, was also measured in this study.  相似文献   

5.
6.
Polycyclic aromatic hydrocarbons (PAHs) seasonal variation and sources in Ubeji, Ifie, and Egbokodo Creeks of the Niger Delta, Nigeria, were predicted using diagnostic ratios (DRs) of parent PAHs (Phe/Phe + Ant; Flu/Flu + Pyr; BaA/BaA + Chry, and Ind/Ind + BghiP) and principal component analysis (PCA). A total of 222 sediment core samples were collected during the wet (August 2010) and the dry seasons (January 2011). The samples were dried and Soxhlet extracted; sample extracts were fractionated and analyzed by gas chromatography/flame ionization detection (GC/FID) to identify individual PAHs. The diagnostic PAH ratios revealed that PAHs in the sediment cores at the three creeks, in both seasons, mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood-burning, coal combustion, diesel, gasoline-powered vehicular emissions, and petroleum combustion were the dominant contributors of PAHs sources at the sampling location. This study provided information on the origin and sources of PAHs in sediment cores, which may be useful for regulatory actions, environmental quality management, contamination history, and environmental forensic studies.  相似文献   

7.
Xia XH  Yu H  Yang ZF  Huang GH 《Chemosphere》2006,65(3):457-466
The contamination of polycyclic aromatic hydrocarbons (PAHs) has become one of the major problems in the Yellow River of China. As the Yellow River is the most turbid large river in the world, it remains unknown to which extent the high suspended sediment content in the river may affect the fate and effect of PAHs. Here we report the effect of sediment on biodegradation of chrysene, benzo(a)pyrene and benzo(g,h,i)perylene with phenanthrene as a co-metabolism substrate in natural waters from the Yellow River. Biodegradation kinetics of the PAHs in the river water with various levels of sediment contents were studied in the laboratory by fitting with a biodegradation kinetics model for organic compounds not supporting growth. The results indicated that the biodegradation rates of PAHs increased with the sediment content in the water. When the sediment contents were 0, 4 and 10 g/l, the biodegradation rate constants of chrysene with the initial concentration of 3.80 microg/l were 0.053, 0.084 and 0.111 d(-1), respectively. Further studies suggested the enhanced biodegradation rate in the presence of sediment was caused by the following mechanisms: (1) the population of PAH-degrading bacteria in the water system was found to increase with the sediment content; the bacteria population on sediment phase was far greater than that on water phase during the cultivation process; (2) the sorption of PAHs on the sediment phase was well described by the dual adsorption-partition model. Although the sorption capacity of PAH per unit weight of sediment decreased with the increase of the sediment content, the amount of sorbed PAH increased with the sediment content; and, (3) the desorption of PAHs from the solid phase led to a higher concentration near the water-sediment interface. Since the bacteria were also attached to the interface, this resulted in an increased contact chance between the bacteria and PAHs.  相似文献   

8.
Ma LL  Chu SG  Wang XT  Cheng HX  Liu XF  Xu XB 《Chemosphere》2005,58(10):1355-1363
Surface soils from the outskirts of Beijing were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography and mass spectrometry (GC-MS). The distribution map of total PAHs content was obtained as a contour plot. The concentration range of 16 PAHs varied by over two orders of magnitude from 0.016 microg g-1 in rural to 3.884 microg g-1 in suburban soils with the relatively standard deviation of 70.5%, showing large differences in the extent of PAHs pollution at the various sampling sites. It was notable that the concentration of BaP was 0.005-0.270 microg g-1 with a mean of 0.055 microg g-1. In general, the distribution of PAHs centered on the high molecular weight PAHs known to be carcinogenic. The 4-6 ring PAHs represented about 66% in rural samples and 70% in suburban soils of the total PAHs found. There was relatively good relationship among most of the individual PAHs and the compounds of Pyr, BaA, Flu, BbF, BaP, Chr and Ph gave strong correlation (r>0.8) with the sum of PAHs. The selected marked compounds, a principal component analysis (PCA) and special PAHs compound ratios (Ph/An vs Flu/Pyr; summation operator COMB/ summation operator EPA-PAHs) suggest the pyrogenic origins, especially traffic exhausts, are the dominant sources of PAHs in Beijing outskirts soils.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   

10.
This study investigated the levels, sources and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in two sediment cores that were collected along the Huaxi Reservoir. The spatial distributions and residue levels of the 16 priority PAHs in the sediments from the Huaxi Reservoir were analyzed for their potential ecological risk, source apportionment and contribution to the total PAH residue. The concentration level of the total PAHs (TPAHs) was in the range 1805 ng·g?1 to 20023 ng·g?1 based on dry weight, and the content of PAHs in the Huaxi Reservoir exhibited a gradual upward trend. The PAH congener ratios fluoranthene/(fluoranthene + pyrene) and indeno[1, 2, 3-cd]pyrene/(indeno[1, 2, 3-cd]pyrene + benzo[g, h, i]perylene) were used to identify the source. The main source of the low molecular weight PAHs was wood and coal combustion, whereas the high molecular weight PAHs were primarily from petroleum combustion sources. The results of an ecological risk assessment demonstrated that ACE poses a potential ecological risk, while FLU, NAP, ANT, BaP, DBA, PHEN and PYR can have serious ecological risks.  相似文献   

11.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.  相似文献   

13.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

14.
A batch experiment was conducted to compare PAH degradation in a polluted river sediment under aerobic and anaerobic conditions, and to investigate whether input of fresh organic material (cellulose) could enhance such degradation. All measurements were checked against abiotic control treatments to exclude artifacts of sample preparation and non-biological processes like aging. Three- and four-ring PAHs could be degraded by the indigenous microbial community under aerobic conditions, but anaerobic metabolism based on iron and sulphate reduction was not coupled with PAH degradation of even the simplest 3-ring compounds like phenanthrene. Cellulose addition stimulated both aerobic and anaerobic respiration, but had no effect on PAH dissipation. We conclude that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow. Dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.  相似文献   

15.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   

16.
The assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface sediments from the Yangtze estuary which is a representative area affected by anthropogenic activity (rapid industrialization, high-population density, and construction of dams upstream) in the world was systematically conducted. Fifty-one samples were analyzed by high-performance liquid chromatography (HPLC). The ??PAHs in all sediments varied from 76.9 to 2,936.8?ng?g?1. Compared with other estuaries in the world, the PAH levels in the Yangtze estuary are low to moderate. Phenanthrene, acenaphthylene, fluoranthene, and pyrene were relatively abundant. The ??PAH levels and composition varied obviously in different estuarine zones due to different sources. The highest ??PAHs concentration was observed in the nearshore of Chongming Island. The PAH composition showed that four to six ring PAHs were mainly found in the nearshore areas, while two to three ring PAHs were in the farther shore zones. The PAHs in the Yangtze estuary were derived primarily from combustion sources. A mixture of petroleum combustion and biomass combustion mainly from coal combustion and vehicle emission was the main source of PAHs from the nearshore areas, while the spill, volatilization, or combustion of petroleum from shipping process and shoreside discharge were important for PAHs in the farther shore areas. The result of potential ecotoxicological risk assessment based on sediment quality guidelines indicated low PAH ecological risk in the Yangtze estuary. The study could provide foundation for the protection of water quality of the Yangtze estuary by inducing main sources input.  相似文献   

17.
我国环境介质中多环芳烃的分布及其生态风险   总被引:10,自引:1,他引:10  
持久性有机污染物多环芳烃(PAHs)在我国环境介质中广泛分布,美国EPA规定的16种.优先控制多环芳烃大多在我国大气、水体、沉积物、土壤和生物体内检出.总结了我国环境介质中PAHs污染水平及特点,分析了其存在的环境风险.我国大气中PAHs污染较重,尤其是北方.水体已普遍受PAHs污染,其中部分水体污染严重;沉积物多环芳烃污染大多处于低生态风险水平,但沉积记录研究表明有越来越严重的趋势.我国土壤和生物体PAHs含量较低,污染生态风险较小.部分区域蔬菜中PAHs含量较高,存在不可忽视的生态风险.  相似文献   

18.
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.  相似文献   

19.
Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low.  相似文献   

20.
Simpson SL  Burston VL  Jolley DF  Chau K 《Chemosphere》2006,65(11):2401-2410
The usefulness of two surrogate methods for rapidly determining the bioavailability of PAHs in hydrocarbon-contaminated marine sediments was assessed. Comparisons are made between the PAHs accumulated by the benthic bivalve, Tellina deltoidalis, and the extractable-PAHs determined using a 6-h XAD-2 resin desorption method and a 4-h gut fluid mimic (GFM) extraction method. There were significant positive relationships between PAH bioaccumulation by the bivalves and sediment PAH concentrations. These relationships were not improved by normalising the sediment PAH concentrations to the organic carbon concentration. The average percentage lipid content of the bivalves was 1.47 ± 0.22% and BSAFs for total-PAHs ranged from 0.06 to 0.80 (kg OC/kg lipid). The XAD-2 and GFM methods both extracted varying amounts of PAHs from the sediments. Low concentrations of PAHs were extracted by the GFM method (0.2–3.6% of total-PAHs in sediments) and the GFM results were inadequate for generalising about the bioavailability of the PAHs in the sediments. The XAD-2 method extracted greater amounts of PAHs (3–34% of total-PAHs in sediments), however, the total-PAH concentrations in the sediments provided a better, or equally good, prediction of PAH bioaccumulation by T. deltoidalis. The results indicated that these methods required further development before they can be applied routinely as surrogate methods for assessing the bioavailability of PAHs in sediments. Future research should be directed towards lowering detection limits and obtaining comparative data for a greater range of sediment types, contaminant classes and concentrations, and organisms of different feeding guilds and with different gut chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号