首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stenotrophomonas maltophilia T3-c, isolated from a biofilter for the removal of benzene, toluene, ethylbenzene, and xylene (BTEX), could grow in a mineral salt medium containing toluene, benzene, or ethylbenzene as the sole source of carbon. The effect of environmental factors such as initial toluene mass, medium pH, and temperature on the degradation rate of toluene was investigated. The cosubstrate interactions in the BTEX mixture by the isolate were also studied. Within the range of initial toluene mass (from 23 to 70 pmol), an increased substrate concentration increased the specific degradation of toluene by S. maltophilia T3-c. The toluene degradation activity of S. maltophilia T3-c could be maintained at a broad pH range from 5 to 8. The rates at 20 and 40 degrees C were 43 and 83%, respectively, of the rate at 30 degrees C. The specific degradation rates of toluene, benzene, and ethylbenzene by strain T3-c were 2.38, 4.25, and 2.06 micromol/g-DCW/hr. While xylene could not be utilized as a growth substrate by S. maltophilia T3-c, the presence of toluene resulted in the cometabolic degradation of xylene. The specific degradation rate of toluene was increased by the presence of benzene, ethylbenzene, or xylene in binary mixtures. The presence of toluene or xylene in binary mixtures with benzene increased the specific degradation rate of benzene. The presence of ethylbenzene in binary mixtures with benzene inhibited benzene degradation. The presence of more than three kinds of substrates inhibited the specific degradation rate of benzene. All BTEX mixtures, except tri-mixtures of benzene, ethylbenzene, and xylene or mixtures of all four substrates, had little effect on the degradation of ethylbenzene by S. maltophilia T3-c. The utilization preference of the substrates by S. maltophilia T3-c was as follows: ethylbenzene was degraded fastest, followed by toluene and benzene. However, the specific degradation rates of substrates, in order, were benzene, toluene, and ethylbenzene.  相似文献   

2.
Biodegradation of fluoranthene by soil fungi   总被引:1,自引:0,他引:1  
A selection of 39 strains of micromycetes known as good degraders of polychlorinated aromatic compounds, mostly isolated from soil and belonging to various taxonomic groups, have been investigated for fluoranthene degradation. Toxicity assays, first evaluated on solid medium MEA, have not shown any toxicity of fluoranthene (1-100 mg.L-1) towards fungi. Whereas, consumption assays on a solid synthetic medium showed a toxicity at 100 mg.L-1. The degradation of fluoranthene (10 mg.L-1) was then investigated in a liquid synthetic medium for 4 days and evaluated by HPLC. Among the 39 strains tested, 18 degraded fluoranthene at 60% or more. Zygomycetes appeared to be the most efficient group (mean degradation: 90%). Among 18 performant strains, 10 had not yet been reported in the literature: Sporormiella australis, Cryptococcus albidus, Cicinobolus cesatii, Pestalotia palmarum, beauveria alba, Aspergillus terreus. Cunninghamella blakesleeana, C. echinulata, Mortierella ramanniana and Rhizopus arrhizus. Fluoranthene adsorption on fungi was very low for the strains which degraded well fluoranthene (mean adsorption: 4%). Whereas, some strains adsorbed it much more such as Colletotrichum dematium (47%) and Penicillium italicum (43%).  相似文献   

3.
Yeast communities from heavily polluted sediments that received the discharge from oil refineries and other industries were studied. Yeast species were isolated from these sediments and their ability to degrade dibenzofuran were determined. Twenty-four different yeast strains were isolated and cultured on aromatic medium; two Candida krusei strains. Candida tenuis, Candida tropicalis, two Pichia anomala strains, Pichia haplophila, two Rhodotorula glutinis strains, Rhodotorula mucilaginosa, two Trichosporon pullulans strains and Yarrowia lipolytica were able to hydroxylate dibenzofuran. Three metabolites were identified by HPLC analysis: 3-hydroxydibenzofuran was in all the cases the most abundant isomer, and while 4-hydroxydibenzofuran was also common, 2-hydroxydibenzofuran was detected in very small quantities and with few species. In the R. glutinis and Y. lipolytica cultures a ring cleavage product was also found. While in the R. gluttinis assays the hydroxydibenzofuran was detected earlier, at 2 days' incubation time, in the other yeast experiments they were observed at the 4-5th incubation days with the maximum amounts at the 7th day. Our results confirmed the ability of autochthonous yeast species to hydroxylate dibenzofuran and to cleave the rings, and it is the first report for C. krusei, C. tenuis, P. anomala, P. haplophila and R. mucilaginosa. The ecological relevance of this study is based on the fact that dibenzofuran is a xenobiotic not easily transformed, so the catabolic activities observed in authochonous yeasts contribute to broadening the biodegradable substrate spectrum.  相似文献   

4.
Endocrine disrupters are of substantial concern, in large part because effects of these compounds on the growth and development of many aquatic organisms are unknown. We examined toxic effects of three substances (ethylbenzene, nonylphenol, and bisphenol A), that are known to be hormonally active in many animals, on growth and development of two species of freshwater sponge. A common developmental abnormality was observed when sponges were treated with each of these compounds. The three compounds also caused significant reductions in growth rates. Lower concentrations resulted in malformed water vascular systems in several replicates. The utility of freshwater sponge bioassays is discussed as it relates to understanding possible mechanisms of action of endocrine disrupters on aquatic invertebrates.  相似文献   

5.
"Semellon" grape juice fortified with a high level of 25 ppm parathion was fermented using Saccharomyces cerevisiae var. ellipsoideus. After 12 days inte parathion levels in the wine and lees were 10.3 and 156 ppm, respectively; the paraoxon, aminoparathion, and p-nitrophenol levels in the wine were 0.16, 0.20, and 4.5 ppm, respectively, and in the lees were 0.04, 3.1 and 10 ppm, respectively. Thus, hydrolysis of parathion to p-nitrophenol and parathion sorption to sedimented particulate matter were important pathways for parathion residue reduction in the wine. The 56-day-old finished wine just prior to bottling contained 8.8 ppm parathion, 0.04 ppm paraoxon, 0.21 ppm aminoparathion, and 3.0 ppm p-nitrophenol. Two months storage at 24 degrees, 12 degrees, 4 degrees, and -20 degrees C had no effect on paraoxon and aminoparathion residue levels in the wine; parathion residues in wine decreased at all storage temperatures.  相似文献   

6.
Degradation of phenol and o-, m- and p-cresol at a concentration of 150 mg l(-1) of each compound was studied in a suspended-carrier biofilm process consisting of two aerobic stages. The fungus Mortierella sarnyensis Mil'ko dominated the microflora in the first reactor, while bacteria dominated in the second reactor. The process was studied at 4, 7, 11 and 15 degrees C. The results from the experiments showed the process to be relatively efficient even at 4 degrees C. The degradation rate was 33% of that at 15 degrees C for o-cresol. Both phenol and the cresols were degraded in the first reactor and a new peak appeared in the HPLC-chromatograms indicating the formation of one or more intermediate compounds in the first stage. These compounds were however degraded to below the detection limit in the second reactor. Small new peaks appeared in the chromatograms of the outlet from the second reactor at the maximum loading rates.  相似文献   

7.
The effect of cadmium chloride on growth and metabolism was tested in Saccharomyces cerevisiae and Rhodotorula rubra.The uptake of cadmium in both yeast strains is the same, but Saccharomyces cells are much more sensitive to cadmium than Rhodotorula cells. In both yeast strains the effect of cadmium on protein synthesis and on transport of glucose or adenine through membranes is very low, the effect on RNA- and ribosome synthesis very high.  相似文献   

8.
The potential of microorganisms to catabolise and metabolise xenobiotic compounds has been recognised as a potentially effective means of toxic and hazardous wastes disposal. Phenol and its derivatives have long been recognised as some of the most persistent chemicals in petroleum refinery wastewaters, with high toxicity even at low concentrations. Biodegradation of these compounds has been recognised as a potential solution for their disposal owing to its cost effectiveness and simplicity. Two species of pseudomonas, P. aeruginosa and P. fluorescence, were studied for their biodegradation potential on phenol present in a refinery wastewater under a batch fermentation process. Phenol was successfully degraded by both species, and there was high positive correlation between phenol biodegradation and microbial growth. The maximum specific growth rate were obtained for both species from the Haldane model. The study revealed the high potential of these local strains, with P. aeruginosa being more effective, and the possibility of using them in bioremediation of petroleum refinery wastewaters.  相似文献   

9.
The dioxin removing capacity of the shell dedioxin system (SDDS-a Ti/V oxidative type catalyst) has been tested using the Ume? lab-scale incinerator over the temperature range 100-230 degrees C and at space velocities of 8000 and 40,000 h(-1). Other analogous organic compounds, such as PCBs, PAHs, chlorobenzenes and chlorophenols have also been investigated. Results show a high degree of dioxin removal already at 100 degrees C (82%), which occurs mainly by adsorption. When the temperature is raised a transition towards destruction is seen and at 150 degrees C, gas hour space velocity (GHSV) 8000 and at 230 degrees C, GHSV 40,000 virtually all removal is by destruction. High PCDD/F destruction efficiencies are reported (> 99.9%, based on I-TEQ); the other dioxin-related species and PAHs are also removed and destroyed to a significant extent. The SDDS has proved to be an effective means of destroying organic compounds in the gas phase, particularly dioxins, at temperatures as low as 150 degrees C.  相似文献   

10.
Huang KC  Zhao Z  Hoag GE  Dahmani A  Block PA 《Chemosphere》2005,61(4):551-560
This study investigated the extent and treatability of the degradation of 59 volatile organic compounds (VOCs) listed in the EPA SW-846 Method 8260B with thermally activated persulfate oxidation. Data on the degradation of the 59 VOCs (in mixture) reacted with sodium persulfate in concentrations of 1 g l(-1) and 5 g l(-1) and at temperatures of 20 degrees C, 30 degrees C, and 40 degrees C were obtained. The results indicate that persulfate oxidation mechanisms are effective in degrading many VOCs including chlorinated ethenes (CEs), BTEXs and trichloroethanes that are frequently detected in the subsurface at contaminated sites. Most of the targeted VOCs were rapidly degraded under the experimental conditions while some showed persistence to the persulfate oxidation. Compounds with "CC" bonds or with benzene rings bonded to reactive functional groups were readily degraded. Saturated hydrocarbons and halogenated alkanes were much more stable and difficult to degrade. For those highly persulfate-degradable VOCs, degradation was well fitted with a pseudo first-order decay model. Activation energies of reactions of CEs and BTEXs with persulfate were determined. The degradation rates increased with increasing reaction temperature and oxidant concentration. Nevertheless, to achieve complete degradation of persulfate-degradable compounds, the systems required sufficient amounts of persulfate to sustain the degradation reaction.  相似文献   

11.
Copper compounds have been intentionally introduced into water bodies as aquatic plant herbicides, algicides and molluscicides. Copper-based fertilizers and fungicides have been widely used in agriculture as well. Despite the fact that copper is an essential element for all biota, elevated concentrations of this metal have been shown to affect a variety of aquatic organisms. Nonetheless, comparative studies on the susceptibility of different freshwater species to copper compounds have seldom been performed. This study was conducted to compare toxicity of copper-based pesticides (copper oxychloride, cuprous oxide and copper sulfate) to different freshwater target (Raphidocelis subcapitata, a planktonic alga and Biomphalaria glabrata, a snail) and non-target (Daphnia similis, a planktonic crustacean and Danio rerio, a fish) organisms. Test water parameters were as follows: pH = 7.4 +/- 0.1; hardness 44 +/- 1 mg/l as CaCO3; DO 8-9 mg/l at the beginning and > 4 mg/l at the end; temperature, fish and snails 25 +/- 1 degrees C, Daphnia 20 +/- 2 degrees C, algae 24 +/- 1 degrees C. D. similis (immobilization), 48-h EC50s (95% CLs) ranging from 0.013 (0.011-0.016) to 0.043 (0.033-0.057) mg Cu/l, and R. subcapitata (growth inhibition), 96-h IC50s from 0.071 (0.045-0.099) to 0.137 (0.090-0.174) mg Cu/l, were the most susceptible species. B. glabrata (lethality), 48-h LC50s from 0.179 (0.102-0.270) to 0.854 (0.553-1.457) mg Cu/l, and D. rerio (lethality), 48-h LC50s 0.063 (0.045-0.089), 0.192 (0.133-0.272) and 0.714 (0.494-1.016) mg Cu/l, were less susceptible than Daphnia to copper-based pesticides. Findings from the present study therefore suggest that increased levels of copper in water bodies is likely to adversely affect a variety of aquatic species.  相似文献   

12.
Arion A  Baronnet F  Lartiges S  Birat JP 《Chemosphere》2001,42(5-7):853-859
In order to characterize the compounds (type and quantities) emitted during melting of organic contaminated scrap and to investigate the mechanism of their formation, an experimental set-up has been designed and built to study precisely the influence of temperature and gas atmosphere in the conditions of an electric arc furnace. These experiments lead to the determination of mass balances (C, H, O, S) and to the quantification of unburnt compounds (tars, carbon monoxide, volatile organic compounds (VOCs), benzene, toluene, ethylbenzene and xylenes (BTEX), polyaromatic compounds (PAHs)). Degradation conditions (gas atmosphere and temperature) corresponding to different areas in the electric furnace have also been investigated. Such experiments lead to a better understanding of degradation mechanisms; this interpretation is not possible from investigations performed in an industrial furnace since there are many uncontrolled parameters (large dispersion of the results).  相似文献   

13.
The biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and seven fungi species, including imperfect strains and higher level lignolitic species, is compared in a 90-day laboratory experiment using a natural, not-fertilized soil contaminated with 10% crude oil. The natural microbial soil assemblage isolated from an urban forest area was unable to significantly degrade crude oil, whereas pure fungi cultures effectively reduced the residues by 26-35% in 90 days. Normal alkanes were almost completely degraded in the first 15 days, whereas aromatic compounds (phenanthrene and methylphenanthrenes) exhibited slower kinetics. Aspergillus terreus and Fusarium solani, isolated from oil-polluted areas, produced the more efficient attack of aliphatic and aromatic hydrocarbons, respectively. Overall, imperfect fungi isolated from polluted soils showed a somewhat higher efficiency, but the performance of unadapted, indigenous, lignolitic fungi was comparable, and all three species, Pleurotus ostreatus, Trametes villosus and Coriolopsis rigida, effectively degraded aliphatic and aromatic components. The simultaneous, multivariate analysis of 22 parameters allowed the elucidation of a clear reactivity trend of the oil components during biodegradation: lower molecular weight n-alkanes > phenanthrene > 3-2-methylphenanthrenes > intermediate chain length n-alkanes > longer chain length n-alkanes > isoprenoids approximately 9-1-methylphenanthrenes. Irrespective of the individual degrading capacities, all fungi species tested seem to follow this decomposition sequence.  相似文献   

14.
Nonmethane hydrocarbons (NMHCs) are important precursors of ozone and other photo oxidants. We presented continuous hourly average concentrations of 45 C2–C10 NMHCs measured in urban area of Dallas, USA from 1996 to 2004. Most of the selected compounds are good variables with less noise. The top 10 species with high ozone-generating potential were identified according to their concentrations and reactivities. The ambient concentrations of abundant anthropogenic emission hydrocarbons measured in Dallas were about 2–4 times of the background values measured in the remote areas with adjacent latitude. The time series for anthropogenic emission hydrocarbons showed an obvious seasonal cycle with relatively high concentration in winter and low concentration in summer. The sinusoidal function with a linearly decreasing factor could well fit the time series of NMHCs. The phase of seasonal cycle for the aromatic hydrocarbons of toluene, m/p xylene and o-xylene that might come from both vehicle emission and solvent utilities evaporation was about 1 month earlier than that for alkanes and alkenes that mainly came from vehicle emission. Ambient NMHCs in Dallas decreased with a stable rate during 1996–2004. For most of compounds with high ozone-generating potential, the rate of ambient concentration decrease was higher or much higher than the rate of volatile organic compounds (VOCs) source emission reduction estimated by EPA's National Emission Inventory. On weekdays, the morning hydrocarbon concentration peak was coincident with morning traffic rush time in Dallas. Another concentration peak was delayed to afternoon traffic rush time. The characteristics of VOCs sources, photochemical removal processes and atmospheric dilution could be interpreted by the diurnal variations of benzene/ethylbenzene (B/E), toluene/ethylbenzene (T/E) and xylene/ethylbenzene (X/E). The ratio of VOC/NOx measured in Dallas was substantially smaller than that calculated for USA cities. Ozone formation in Dallas was VOC sensitive.  相似文献   

15.
管式生物过滤器去除乙苯废气   总被引:1,自引:0,他引:1  
生物过滤由于其良好的成本效益和环境友好性已经成为控制挥发性有机化合物(VOCs)含量和气味气体排放的常规技术。营养物质的均匀分布、生物膜和介质床内的气体流是成就一个性能优良的生物过滤器至关重要的因素。而由本实验室开发的管式生物过滤器(TBFs)已被证明具备此优势。本实验的管式生物过滤器以聚氨酯海绵作为填料,研究在不同有机负荷、气体停留时间(EBCT)、进气量和表面活性剂等条件下乙苯废气的去除效率(RE)。实验同时记录了管式生物过滤器启动阶段的表现。初期使附着在填料上的微生物暴露在浓度为40 mg/m3的乙苯废气中40 d,此时的气体停留时间为15 s,使微生物慢慢适应并逐步降解乙苯废气;然后连续地控制管式生物过滤器的入口乙苯浓度为40、80、120和160 mg/m3,以使有机负荷逐步升高。结果表明,乙苯去除效率随着有机负荷的增大而逐步减小。当气体停留时间从15 s增加到30 s和60 s,而有机负荷控制在38.60 g/(m3·h)时,乙苯废气去除效率略微增加。此外,随着进气量的增大乙苯废气的最大平均去除效率有所下降而此时的降解容量增大,这个过程中乙苯进气浓度保持不变。结果还表明,在营养液中加入聚乙二醇辛基苯基醚这种表面活性剂可以提高乙苯废气的去除效率。  相似文献   

16.
采用同时硝化反硝化对某垃圾填埋场渗滤液进行处理,并对有机物去除效果进行分析。实验结果表明,反应器对渗滤液中COD、氨氮、总氮和部分有机物具有较好的处理效果,COD、氨氮和总氮的平均去除率为82.34%、99.82%和65.31%。GC-MS分析总共检测出53种主要有机污染物,其中邻苯二甲酸二丁酯等29种有机物的去除率达100%,乙基苯等5种有机物的去除率高于90%,邻苯二甲酸二异辛酯等8种有机物的去除率介于60%和90%之间,此外还有4-苯基戊醇等5种有机物去除率低于60%。反应器内存在亚硝氮途径的脱氮反应形式。  相似文献   

17.
Concentrations and isotopic compositions (13C/12C) of aromatic hydrocarbons were determined in eight samples obtained from the strongly anoxic part of the leachate plume downgradient from the Vejen Landfill (Denmark), where methanogenic, sulfate-reducing and iron-reducing conditions were observed. Despite the heterogeneous distribution of the compounds in the plume, the isotope fractionation proved that ethylbenzene and m/p-xylene were subject to significant biodegradation within the strongly anoxic plume. The isotope fractionation factors (alphaC) for the degradation of the m/p-xylene (1.0015) and ethylbenzene (1.0021) obtained from the field observations were similar to factors previously determined for the anaerobic degradation of toluene and o-xylene in laboratory experiments, and suggest that in situ biodegradation is one major process controlling the fate of these contaminants in this aquifer. The isotope fractionation determined for 1,2,4-trimethylbenzene and 2-ethyltoluene suggested in situ biodegradation; however, the isotopic composition did not correlate well with the respective concentration as expressed by the Rayleigh equation. Some other compounds (1,2,3-trimethylbenzene, o-xylene, naphthalene and fenchone) did not show significant enrichments in delta13C values along the flow path. The compound concentrations were too low for accurate isotope analyses of benzene, toluene, 1- and 2-methylnaphthalene, while interferences in the chromatography made it impossible to evaluate the isotopic composition for 4-ethyltoluene, 1,3,5-trimethylbenzene and camphor.In addition to demonstrating the potential of assessing isotopic fractionation as a means for documenting the in situ biodegradation of complex mixtures of aromatic hydrocarbons in leachate plumes, this study also illustrates the difficulties for data interpretation in complex plumes and high analytical uncertainties for isotope analysis of organic compounds in low concentration ranges.  相似文献   

18.
Lee MR  Chang CM  Dou J 《Chemosphere》2007,69(9):1381-1387
A trace analytical method of benzene, toluene, ethylbenzene and xylenes (BTEX) in water has been developed by using headspace solid-phase microextraction (HS-SPME) coupled to cryo-trap gas chromatography-mass spectrometry (GC-MS). The chromatographic peak shape for BTEX was improved by using cryo-trap equipment. The HS-SPME experimental procedures to extract BTEX from water were optimized with a 75 microm carboxen/polydimethylsiloxane (CAR/PDMS)-coated fiber at a sodium chloride concentration of 267 g l(-1), extraction for 15 min at 25 degrees C and desorption at 290 degrees C for 2 min. Good linearity was verified in a range of 0.0001-50 microg l(-1) for each analyte (r(2)=0.996-0.999). The limits of detection (LODs) of BTEX in water reached at sub-ng l(-1) levels. LODs of benzene, toluene, ethylbenzene, m/p-xylene and o-xylene were 0.04, 0.02, 0.05, 0.01 and 0.02 ng l(-1), respectively. The proposed analytical method was successfully used for the quantification of trace BTEX in ground water. The results indicate that HS-SPME coupled to cryo-trap GC-MS is an effective tool for analysis of BTEX in water samples at the sub-ng l(-1) level.  相似文献   

19.
The effect of temperature on polyvinylchloride (PVC) combustion using a downstream tubular furnace was investigated for the formation of polycylcic aromatic hydrocarbons (PAHs) and chlorinated compounds. As the temperature increased, higher levels of PAHs were generated. Chlorinated compounds reached a peak at 600 degrees C, with low emissions recorded at 300 and 900 degrees C. There was a close correlation (R2 = 0.97) among polychlorinated biphenyls (PCBs), hexachlorobenzene, pentachlorobenzene, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). PAHs at all temperatures were analyzed in the gas phase. PCDD/Fs and PCBs were emitted as a solid phase at 300 and 600 degrees C and as a gas phase at 900 degrees C. For some PAHs, chlorobenzenes, and PCDD/Fs, a mathematical equation between the gas and solid phase and the reciprocal temperature in semilog proportion was derived. The proposed equation, which is log (amount in gas phase/amount in solid phase) = -A/T + B, where T is the temperature of the furnace and A and B are constants, for these species relating their gas/solid distributions showed a good relationship.  相似文献   

20.
The rate and extent of biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) in ground-water was studied in samples from a contaminated site which contained total BTEX concentrations of up to 20 000 microg litre(-1). All compounds were rapidly degraded under natural aerobic conditions. Elevation of incubation temperature, supply of organic nutrients or addition of inorganic fertiliser did not increase the rate or extent of biodegradation and it appeared that oxygen supply was the factor limiting BTEX degradation at this site. Attempts to increase the dissolved oxygen concentration in the ground-water by the addition of hydrogen peroxide to give a final concentration of 200 mg litre(-1) resulted in the complete inhibition of biodegradation. No biodegradation occurred under anaerobic conditions except when nitrate was provided as a terminal electron acceptor for microbial respiration. Under denitrifying conditions there was apparent biodegradation of benzene, toluene, ethyl-benzene, m-xylene and p-xylene but o-xylene was not degraded. Degradation under denitrifying conditions occurred at a much slower rate than under oxygenated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号