首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).  相似文献   

2.
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO3 and NH4H2PO4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO4(2-) and higher concentrations of Fe(II) and CH4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.  相似文献   

3.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

4.
Large-scale contaminated sites with multiple contaminants in the groundwater present a challenge to risk assessment and remediation. Attenuation reactions take place in the subsurface and act to contain contaminants, but must be thoroughly investigated on a site-specific basis. Field data from monitoring wells at a contaminated industrial site in Bitterfeld, Germany, are presented and analyzed for evidence of the prevalent biodegradation reactions. The groundwater in the Tertiary aquifer is contaminated with large quantities of chlorinated aliphatic compounds, in addition to chlorobenzenes and BTEX. In this strictly anaerobic environment, geochemical indications for several microbial processes were found, including methanogenesis, sulfate and iron reduction as well as reductive dechlorination of the chlorinated hydrocarbons. Direct evidence for the latter degradation reaction was observed along the flowpath due to the appearance of intermediates and an increase in the degree of dechlorination.  相似文献   

5.
The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.  相似文献   

6.
Adrian NR  Arnett CM 《Chemosphere》2007,66(10):1849-1856
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT) are explosives that are frequently found as environmental contaminants on military installations. Hydrogen has been shown to support the anaerobic transformation of these explosives. We investigated ethanol and propylene glycol as electron donors for providing syntrophically produced H2 for stimulating the anaerobic biodegradation of explosives in contaminated soil. The study was conducted using anoxic microcosms constructed with slurries of the contaminated soil and groundwater. The addition of 5mM ethanol and propylene glycol enhanced the biodegradation of RDX and HMX relative to the control bottles. Ethanol was depleted within about 20 days, resulting in the transient formation of hydrogen, acetate, and methane. The hydrogen headspace concentration increased from 8 ppm to 1838 ppm before decreasing to background concentrations. Propylene glycol was completely degraded after 15 days, forming hydrogen, propionate, and acetate as end-products. The hydrogen headspace concentrations increased from 56 ppm to 628 ppm before decreasing to background concentrations. No methane formation was observed during the incubation period of 48 days. Our findings indicate the addition of ethanol and propylene to the aquifer slurries increased the hydrogen concentrations and enhanced the biotransformation of RDX and HMX in the explosive-contaminated soil.  相似文献   

7.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   

8.
Metal concentrations were determined for groundwater suspended matter from a site in the coastal aquifer of Israel which has been irrigated with secondary sewage effluents since the 1960's. Suspended matter was collected from the aquifer saturated zone by pumping and by a multi-layer sampler. Fine sediments were collected from both the unsaturated and saturated zones of the contaminated aquifer, as well as from an adjacent uncontaminated environment. Ag, Cu, Fe, Mn and Zn were leached from the samples in three sequential chemical extractions which are taken to represent the carbonate, organic and oxide phases. Comparison of the aquifer samples to those of the adjacent environment showed that Fe and Mn are primarily enriched in non-mobile fine sediments and not in suspended matter, whereas the concentrations of Zu, Cu and Ag show up to an order of magnitude enrichment in the mobile suspended matter in groundwater. The enrichment of these metals in the suspended matter indicates that metals from sewage effluents and agricultural activities have reached the groundwater.  相似文献   

9.
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally <1 mol%), the signature metabolite approach works best at higher toluene concentrations when it is not constrained by detection limits. In wells with lower toluene concentrations (410-640 microg/L), carbon and hydrogen isotopic values were enriched by up to approximately 2 per thousand for delta13C and approximately 70 per thousand for delta2H. This evidence of isotopic fractionation verifies the effects of biodegradation in these low concentration wells where metabolites may already be below detection limits. The combined use of signature metabolite and CSIA data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.  相似文献   

10.
Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1.  相似文献   

11.
Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15–1.35 km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8 years for RDX biodegradation in the upper 15 m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2 years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5 years, assuming purely aerobic biodegradation, and between 207.5 and 394.3 years, assuming purely anaerobic biodegradation.The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.  相似文献   

12.
An investigation of a tetrachloroethene (PCE) groundwater plume originating at a dry cleaning facility on a sand aquifer and discharging to a river showed that the near-river zone strongly modified the distribution, concentration, and composition of the plume prior to discharging into the surface water. The plume, streambed concentration, and hydrogeology were extensively characterized using the Waterloo profiler, mini-profiler, conventional and driveable multilevel samplers (MLS), Ground Penetrating Radar (GPR) surveys, streambed temperature mapping (to identify discharge zones), drivepoint piezometers, and soil coring and testing. The plume observed in the shallow streambed deposits was significantly different from what would have been predicted based on the characteristics of the upgradient plume. Spatial and temporal variations in the plume entering the near-river zone contributed to the complex contaminant distribution observed in the streambed where concentrations varied by factors of 100 to 5000 over lateral distances of less than 1 to 3.5 m. Low hydraulic conductivity semi-confining deposits and geological heterogeneities at depth below the streambed controlled the pattern of groundwater discharge through the streambed and influenced where the plume discharged into the river (even causing the plume to spread out over the full width of the streambed at some locations). The most important effect of the near-river zone on the plume was the extensive anaerobic biodegradation that occurred in the top 2.5 m of the streambed, even though essentially no biodegradation of the PCE plume was observed in the upgradient aquifer. Approximately 54% of the area of the plume in the streambed consisted solely of PCE transformation products, primarily cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). High concentrations in the interstitial water of the streambed did not correspond to high groundwater-discharge zones, but instead occurred in low discharge zones and are likely sorbed or retarded remnants of past high-concentration plume discharges. The high-concentration areas (up to 5529 microg/l of total volatile organics) in the streambed are of ecological concern and represent potential adverse exposure locations for benthic and hyporheic zone aquatic life, but the effect of these exposures on the overall health of the river has yet to be determined. Even if the upgradient source of PCE is remediated and additional PCE is prevented from reaching the streambed, the high-concentration deposits in the streambed will likely take decades to hundreds of years to flush completely clean under natural conditions because these areas have low vertical groundwater flow velocities and high retardation factors. Despite high concentrations of contaminants in the streambed, PCE was detected in the surface water only rarely due to rapid dilution in the river and no cDCE or VC was detected. Neither the sampling of surface water nor the sampling of the groundwater from the aquifer immediately adjacent to the river gave an accurate indication of the high concentrations of PCE biodegradation products present in the streambed. Sampling of the interstitial water of the shallow streambed deposits is necessary to accurately characterize the nature of plumes discharging to rivers.  相似文献   

13.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

14.
Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be present in the root zone, and SO(4)(2-) reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2 m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO(4)(2-) reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers.  相似文献   

15.
The remediation of nitroaromatic contaminated groundwater is sometimes difficult because nitroaromatic compounds are resistant to biodegradation and, when they do transform, the degradation of the products may also be incomplete. A simple nitroaromatic compound, nitrobenzene, was chosen to assess the feasibility of an in situ multi-zone treatment system at the laboratory scale. The proposed treatment system consists of a zero valent granular iron zone to reduce nitrobenzene to aniline, followed by a passive oxygen release zone for the aerobic biodegradation of the aniline daughter product using pristine aquifer material from Canadian Forces Base (CFB) Borden, Ontario, as an initial microbial source. In laboratory batch experiments, nitrobenzene was found to reduce quickly in the presence of granular iron forming aniline, which was not further degraded but remained partially sorbed onto the granular iron surface. Aniline was found to be readily biodegraded with little metabolic lag under aerobic conditions using the pristine aquifer material. A sequential column experiment, containing a granular iron reducing zone and an aerobic biodegradation zone, successively degraded nitrobenzene and then aniline to below detection limits (0.5 microM) without any noticeable reduction in hydraulic conductivity from biofouling, or through the formation of precipitates.  相似文献   

16.
We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.  相似文献   

17.
In situ bioremediation is an innovative technique for the remediation of contaminated aquifers that involves the use of microorganisms to remediate soils and groundwaters polluted by hazardous substances. During its application, this process may require the addition of nutrients and/or electron acceptors to stimulate appropriate biological activity. Hydrogen peroxide has been commonly used as an oxygen source because of the limited concentrations of oxygen that can be transferred into the groundwater using above-ground aeration followed by reinjection of the oxygenated groundwater into the aquifer or subsurface air sparging of the aquifer. Because of several potential interactions of H2O2 with various aquifer material constituents, its decomposition may be too rapid, making effective introduction of the H2O2 into targeted treatment zones extremely difficult and costly. Therefore, a bench-scale study was conducted to determine the fate of H2O2 within subsurface aquifer environments. The purpose of this investigation was to identify those aquifer constituents, both biotic and abiotic, that are most active in controlling the fate of H2O2. The decomposition rates of H2O2 were determined using both equilibrated water samples and soil slurries. Results showed H2O2 decomposition to be effected by several commonly found inorganic soil components; however, biologically mediated catalytic reactions were determined to be the most substantial.  相似文献   

18.
Rogers SW  Ong SK  Moorman TB 《Chemosphere》2007,69(10):1563-1573
The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detected microbial populations in the contaminated sediments were three orders of magnitude greater than nearby uncontaminated sediments, suggesting growth on coal-tar constituents in situ. Actinobacteria, beta- and gamma-Proteobacteria, and Flavobacteria dominated the in situ aerobic (>1 mg l(-1) dissolved oxygen) microbial community, whereas sulfate-reducing bacteria comprised 37% of the microbial community in the sulfidogenic region of the aquifer. Rapid mineralization of naphthalene and phenanthrene were observed in aerobic laboratory microcosms and resulted in significant enrichment of beta- and gamma-Proteobacteria potentially explaining their elevated presence in situ. Firmicutes, Flavobacteria, alpha-Proteobacteria, and Actinobacteria were also enriched in the mineralization assays, but to a lesser degree. Nitrate- and sulfate-limited mineralization of naphthalene in laboratory microcosms occurred to a small degree in aquifer sediments from locations where groundwater chemistry indicated nitrate- and sulfate-reduction, respectively. Some iron-limited mineralization of naphthalene and phenanthrene was also observed in sediments originating near groundwater measurements of elevated ferrous iron. The results of this study suggest that FISH may be a useful tool for providing a much needed link between laboratory microcosms and groundwater measurements made in situ necessary to better demonstrate the potential for natural attenuation at complex PAH contaminated sites.  相似文献   

19.
Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.  相似文献   

20.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号