首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbes play a central role in the decomposition and remineralization of organic matter and recycling of nutrients in aquatic environments. In this study, we examined the influence of physical, chemical, and biological parameters on the rate of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light intensity as photosynthetically active radiation, temperature, salinity, nutrients like NO3–N, SiO4–Si, and PO4–P, and chlorophyll a (Chl a) were measured along with BP, VP, and net primary production (NPP). NPP showed a strong positive correlation with light and Chl a (r 2?=?0.56 and 0.47, respectively), while VP showed a strong positive correlation with light, salinity, and Chl a (r 2?=?0.37, 0.58, and 0.37, respectively) and a negative correlation with BP (r 2?=??0.39) at P?≤?0.05. We observed a diurnal pattern in BP but did not have any significant correlation with light. Similar diurnal pattern was seen in VP, the peak of which was in succession with BP, suggesting that virus-mediated lysis plays an important role in loss processes of bacteria in Cochin estuary. The results of our study highlight the light-dependent and physicochemical-dependent diurnal variation in virioplankton production in a tropical estuarine ecosystem.  相似文献   

2.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

3.
Changes in the autotrophic pico- (0.2–2 μm), nano- (2–20 μm), and microplankton (>20 μm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m???3 and 432 mgC m???3 day???1) as compared to the coastal waters (5.3 mg m???3 and 224 mgC m???3 day???1). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 ± SD 8.3% and 81.2 ± SD 3.2%) and the coastal waters (average 73.2 ± SD 17.2% and 81.9 ± 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 ± SD 3.9 mgC mgChl a m???3 h???1), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 ± 7 mgC mgChl a m???3 h???1). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.  相似文献   

4.
This study reports the results from the analyses of a 30-year (1974–2004) river water quality monitoring dataset for NO x –N (NO3–N?+?NO2–N), NH4–N, PO4–P and SiO2–Si at the tidal limit of the River Tamar (SW England), an agriculturally dominated and sparsely populated catchment. Annual mean concentrations of NH4–N, PO4–P and SiO2–Si were similar to other rural UK rivers, while annual mean concentrations of NO x –N were clearly lower. Estimated values for the 1940s were much lower than for those of post-1974, at least for NO3–N and PO4–P. Flow-weighted mean concentrations of PO4–P decreased by approximately 60 % between 1974 and 2004, although this change cannot be unequivocally ascribed to either PO4–P stripping from sewage treatment work effluents or reductions in phosphate fertiliser applications. Lower-resolution sampling (to once per month) in the late 1990s may also have led to the apparent decline; a similar trend was also seen for NH4–N. There were no temporal trends in the mean concentrations of NO x –N, emphasising the continuing difficulty in controlling diffuse pollution from agriculture. Concentrations of SiO2–Si and NO x –N were significantly and positively correlated with river flows ≤15 m3?s?1, showing that diffuse inputs from the catchment were important, particularly during the wet winter periods. In contrast, concentrations of PO4–P and NH4–N did not correlate across any flow window, despite the apparent importance of diffuse inputs for these constituents. This observation, coupled with the absence of a seasonal (monthly) cycle for these nutrients, indicates that, for PO4–P and NH4–N, there were no dominant sources and/or both undergo extensive within-catchment processing. Analyses of nutrient fluxes reveal net losses for NO3–N and SiO2–Si during the non-winter months; for NO3–N, this may be due to denitrification. Areal fluxes of NO x –N from the catchment were towards the higher end of the range for the UK, while NH4–N and PO4–P were closer to the lower end of the ranges for these nutrients. These data, taken together with information on sestonic chlorophyll a, suggest that water quality in the lower River Tamar is satisfactory with respect to nutrients. Analyses of these monitoring data, which were collected at considerable logistical and monetary cost, have revealed unique insights into the environmental behaviour of key nutrients within the Tamar catchment over a 30-year period.  相似文献   

5.
Urban wastewater in Turkey is primarily discharged without treatment to marine environments, streams and rivers, and natural and artificial lakes. Since it has been well established that untreated effluent in multi-use waters can have acute and chronic impacts to both the environment and human health, it is important to evaluate the consequences of organic enrichment relative to the structure and function of aquatic environment. We investigated the impacts of untreated municipal wastewater discharge from the city of Gumushane in the Eastern Black Sea Region of Turkey on the surface water quality of the stream Harsit. Several key water-quality indicators were measured: chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N), nitrite nitrogen (NO 2 ? –N), nitrate nitrogen (NO 3 ? –N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO 4 3? –P), methylene blue active substances (MBAS), water temperature (t), pH, dissolved oxygen (DO), and electrical conductivity (EC). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at three longitudinally distributed stations. While t, pH, DO, and EC demonstrated relatively little variability over the course of the study, other parameters showed substantial temporal and spatial variations. The most dramatic differences were noted in COD, NH 4 + –N, NO 2 ? –N, TKN, TN, PO 4 3— P, and MBAS immediately downstream of the wastewater discharge. Concentration increases of 309 and 418 % for COD, 5,635 and 2,162 % for NH 4 + –N, 2,225 and 674 % for NO 2 ? –N, 283 and 478 % for TKN, 208 and 213 % for PO 4 3? –P, and 535 and 1,260 % for MBAS were observed in the summer and autumn, respectively. These changes were associated with greatly diminished seasonal stream flows. Based on NO 2 ? –N, TKN, PO 4 3— P, and MBAS concentrations, it was concluded that Harsit stream water was correctly classified as polluted. The most telling parameter, however, was NH 4 + –N, which indicated highly polluted waters in both the summer and autumn. The elevated concentrations of both P and N in the downstream segment of the stream triggered aggressive growth of submerged algae. This eutrophication of river systems is highly representative of many urban corridors and is symptomatic of ongoing organic enrichment that must be addressed through improved water treatment facilities.  相似文献   

6.
Trace metal concentrations in the muscle of the bivalve Villorita cyprinoides from the Cochin backwaters (southwest coast of India) were investigated during the monsoon, post-monsoon and pre-monsoon periods. The seasonal average ranges of metals (μg g?1, dry weight) in the bivalve were as follows: Fe (18,532.44–28,267.05), Co (23.25–37.58), Ni (10.56–19.28), Cu (3.58–11.35), Zn (48.45–139.15), Cd (1.06–1.50) and Pb (3.05–4.35). The marginally elevated metal concentrations in bivalve muscles are probably related to high influx of metals as a result of pollution from the industries and agricultural fields with consequent increased bioavailability of metals to the bivalve. Evaluation of the risks to human health associated with consumption of the bivalves suggested that there is no health risk for moderate shellfish consumers. A regular and continuous biomonitoring program is recommended to establish V. cyprinoides as a bioindicator for assessing the effects of trace metal pollution and to identify future changes to conserve the “health” of this fragile ecosystem.  相似文献   

7.
The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS? probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6–15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.  相似文献   

8.
The influence of anthropogenic loading on the distribution of soft bottom benthic organisms of a tropical estuary (Cochin backwaters) was examined. The industrial activities were found to be high in the northern and central part of the estuary, where dissolved inorganic nitrogen (DIN > 210 ??M) and phosphorus (DIP > 6.5 ??M) have caused high abundance of chlorophyll a (up to 73 mg m???3) and accumulation of organic carbon in sediments (up to 5%). Principal component analysis distinguished three zones in the estuary. The central zone (Z1) was characterized by organic enrichment, low species diversity, and increased number of pollution tolerant species. Long-term deterioration of the estuary is indicated by an increase in the nutrients and chlorophyll a levels by sixfold during the last few decades. Flow restrictions in the lower estuary have lead to a fourfold increase in sediment organic carbon over the period of three decades. The reduced benthic diversity followed by an invasion of opportunistic polychaetes (Capitella capitata), are indicative of a stress in the estuary.  相似文献   

9.
We present diurnal variation of ambient ammonia (NH3) in relation with other trace gases (O3, CO, NO, NO2, and SO2) and meteorological parameters at an urban site of Delhi during winter period. For the first time, ambient ammonia (NH3) was monitored very precisely and continuously using ammonia analyzer, which operates on chemiluminescence method. NH3 estimation efficiency of the chemiluminescence method (>90%) is much higher than the conventional chemical trapping method (reproducibility 4.5%). Ambient NH3 concentration reaches its maxima (46.17 ppb) at night and minimum during midday. Result reveals that the ambient ammonia (NH3) concentration is positively correlated with ambient NO (r 2?=?0.79) and NO2 (r 2?=?0.91) mixing ratio and negatively correlated with ambient temperature (r 2?=???0.32). Wind direction and wind speed indicates that the nearby (~500 m NW) agricultural fields may be major source of ambient NH3 at the observational site.  相似文献   

10.
Integrated pipe manufacturing industry is operation intensive and has significant air pollution potential especially when it is equipped with a captive power production facility. Emissions of SO2, NO x , and particulate matter (PM) were estimated from the stationary sources in a state-of-the-art pipe manufacturing plant in India. Major air polluting units like blast furnace, ductile iron spun pipe facility, and captive power production facility were selected for stack gas monitoring. Subsequently, ambient air quality modeling was undertaken to predict ground-level concentrations of the selected air pollutants using Industrial Source Complex (ISC 3) model. Emissions of SO2, NO x , and particulate matter from the stationary sources in selected facilities ranged from 0.02 to 16.5, 0.03 to 93.3, and 0.09 to 48.3 kg h???1, respectively. Concentration of SO2 and NO x in stack gas of 1,180-kVA (1 KW = 1.25 kVA) diesel generator exceeded the upper safe limits prescribed by the State Pollution Control Board, while concentrations of the same from all other units were within the prescribed limits. Particulate emission was highest from the barrel grinding operation, where grinding of the manufactured pipes is undertaken for giving the final shape. Particulate emission was also high from dedusting operation where coal dust is handled. Air quality modeling indicated that maximum possible ground-level concentration of PM, SO2, and NO x were to the tune of 13, 3, and 18 μg/m3, respectively, which are within the prescribed limits for ambient air given by the Central Pollution Control Board.  相似文献   

11.
In order to characterize the trophic state of the southern coastal waters of the Caspian Sea, trophic index (TRIX) as well as numerical analysis using cluster and discriminant analysis were employed in this study. Chemical and biological parameters (NO3, NO2, NH4, PT, DO, and Chla) used in this study were collected seasonally from summer 1999 to spring 2000. A new trophic index developed by modification of TRIX indicated mesotrophic to eutrophic conditions for the Caspian Sea. Numerical analysis revealed three groups of the study area and it was found that the used methods are in good agreement. Both of them predicted poor to moderate conditions in the western part of the study area and the numerical classification predicted trophic conditions in the study area. However, TRIX was found to be a more accurate and suitable method. It performs more conservatively than the numerical classification and characterized lower classes of water quality for the stations in central and eastern parts of the study area.  相似文献   

12.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

13.
Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV–Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV–Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m3 and 50 μg/m3 for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).  相似文献   

14.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

15.
Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO3 ? and low concentrations of NO3 ? and SO4 2? indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50 %) and the competition for adsorption site by anions (PO4 3?) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO4 3?.  相似文献   

16.
We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4 2?), nitrate (NO3 2?), ammonium (NH4 +), sulphate (SO4 2?), lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), aluminium (Al3+), and copper (Cu2+) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12–26.5 °C; pH 5.96–8.45; turbidity 0.53–18.8 NTU; EC 15.8–5180 mS m?1; BOD5 0.60–7.32 mg L?1; COD 10.5–72.9 mg L?1; PO4 2??<?500–2,460 μg L?1; NO3 2? <0.05–4.21 mg L?1; NH4 +?<?0.5–1.22 mg L?1; SO4 2? 3.90–2,762 mg L?1; Pb2+ 0.023–0.135 mg L?1; Hg2+ 0.0122–0.1231 mg L?1 Cd2+ 0.068–0.416 mg L?1; Al3+ 0.037–1.875 mg L?1, and Cu2+0.006–0.144 mg L?1. The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.  相似文献   

17.
Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NOx), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NOx had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO 4 3?? ) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F?, Cl?, and SO 4 2?? ), F? accounted for <1 % of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality.  相似文献   

18.
Laboratory experiment was conducted to understand the persistence behavior of tetraconazole in three soils of West Bengal (alluvial, red lateritic, and coastal saline) and also in water maintained at three different pH (4.0, 7.0, and 9.2) conditions. Processed soil samples (100 g) were spiked at two treatment doses: 2.5 μg/g (T1) and 5.0 μg/g (T2). Double distilled buffered water (200 ml) was spiked at two treatment doses: 1.0 μg/ml (T1) and 2.00 μg/ml (T2). The tetraconazole dissipation followed first-order reaction kinetics and the residual half-life (T 1/2) values in soil were found to be in the range of 66.9–77.2 days for T1 and 73.4–86.0 days for T2. The persistence increased in the order red lateritic > new alluvial > coastal saline. Interestingly, the red lateritic soil exhibited the lowest pH (5.56) and organic carbon (0.52 %) content as compared to other two soils. However, the dissipation of tetraconazole in case of water was not pH dependant. The T 1/2 values in water were in the range of 94 to 125 days. The study indicated the persistent nature of tetraconazole in soil and water.  相似文献   

19.
The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter ≤10 μm (PM10), SO2, and NO2] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM10, SO2, and NO2 increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM10, NO2, and SO2 concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM10 in all the years from 2002 to 2007 and for NO2 in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM10 in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM10, SO2, and NO2.  相似文献   

20.
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249–3,745 mg/m3 and 2,440–2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NO x , SO x and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062–0.093 mg/m3 NO x , 0.026 mg/m3 SO x and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker–roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号