首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对污水处理厂冬季反硝化脱氮效率不佳的问题,以常州市某污水处理厂A~2/O工艺为研究对象,模拟探讨了不同外加碳源、碳源投加量、溶解氧(DO)和硝态氮浓度对生物处理系统反硝化脱氮能力的影响。结果表明,外加有机碳源对系统的反硝化效能有明显的强化效果。3种外加有机碳源(乙酸、乙醇和乙酸钠)中,乙酸为最佳碳源。当乙酸投加量为40mg/L时,系统反硝化脱氮效率最高,比反硝化速率可达1.964mg/(g·h),反硝化碳耗最少,为7.14 mg/mg。DO与比反硝化速率成反比,DO≤0.20mg/L时,反硝化能力最强。硝态氮初始质量浓度为20mg/L左右时,反硝化能力最强。在实际工程应用中,可以通过提高硝化效果或直接调整回流比实现反硝化脱氮最优条件,将有助于提高系统的冬季脱氮效果。  相似文献   

2.
戴鹏  张勇 《环境工程学报》2008,2(4):507-510
研究了压力式接触氧化法的脱氮性能,分析了容积负荷、溶解氧和停留时间等因素对反应器脱氮效果的影响.研究表明,压力式接触氧化法具有明显的同步硝化反硝化现象,当HRT=1.8 h时,DO高达5.4 mg/L,可获得90%以上的反硝化率.当HRT=1.8 h,溶解氧4~5 mg/L,容积负荷为10~12 kg COD/(m3·d)时,氨氮去除率80%左右,总氮去除率达70%~80%.  相似文献   

3.
溶解氧对SBR脱氮性能与脱氮方式的影响   总被引:4,自引:0,他引:4  
通过设置不同溶解氧(DO)浓度(曝气时段DO浓度均值分别为2.0、1.2和0.4 mg/L),研究了SBR的脱氮性能以及脱氮方式。结果表明,低DO条件下SBR可实现良好的脱氮效果,但需延长曝气时间。运行稳定后,各反应器氨氮的去除率均达到94%以上。总氮去除率随DO水平的降低而增高,分别为67%、74%和78%。不同DO浓度下SBR的脱氮方式不尽相同,DO浓度越低,同步硝化反硝化(SND)脱氮效果越明显。DO为2.0、1.2和0.4 mg/L时,SND率分别为31.4%、48.3%和66.8%。典型周期性实验表明,DO为2.0 mg/L时,通过SND现象去除的总氮占进水总氮的比例为7.6%,通过内源反硝化去除的总氮为12.0%;DO为1.2 mg/L时,通过亚硝酸型SND现象去除的总氮为12.2%,通过内源反硝化去除的总氮为8.1%;DO为0.4 mg/L时,通过亚硝酸型SND现象去除的总氮为15.8%,通过内源反硝化去除的总氮为5.0%。  相似文献   

4.
碳源投加方式对SBR工艺脱氮速率的影响   总被引:1,自引:0,他引:1  
为了提高生物反应器的脱氮效率,研究采用SBR处理模拟生活污水,利用醋酸钠作为碳源,考察碳源投加方式对脱氮速率的影响。结果表明,当温度为10~15℃,进水COD为330~550 mg/L时,采用不同的碳源投加方式,COD去除率均高于95%。进水一次投加2.4 g碳源,COD平均反应速率为5.3 mg/(g·h),平均反硝化速率为0.28 mg/(g·h)。进水、反应器运行3 h时分别投加1.2 g碳源,COD平均反应速率为6.89 mg/(g·h),平均反硝化速率为0.37 mg/(g·h)。进水、反应6 h时分别投加1.2 g碳源,COD平均反应速率为6.50 mg/(g·h),平均反硝化速率为0.52 mg/(g·h)。进水投加1.2 g碳源、反应器运行3 h和6 h时分别投加0.6 g醋酸钠碳源,COD平均反应速率为6.2 mg/(g·h),平均反硝化速率为0.39 mg/(g·h)。分次投加碳源能够提高COD反应速率和TN去除率,同时保持较高的硝化反硝化速率。  相似文献   

5.
采用交替厌氧/缺氧/好氧运行的序批式活性污泥反应器(SBR),通过梯度投加电子受体NO_3~-,考察长期缺氧吸磷驯化下强化生物除磷(EBPR)系统的性能及除磷方式的转化。结果表明,当进水COD为300~450mg/L、PO_4~(3-)(以P计,下同)和氨氮分别为8、14mg/L时,驯化期间TN去除率均保持在75%以上,长期缺氧吸磷驯化对COD和氨氮的去除没有影响。硝态氮投加量为5mg/L时,EBPR系统因电子受体投加不足除磷性能迅速恶化,增加硝态氮投加量至10mg/L,经过近30d的恢复,缺氧吸磷率最高可达97.67%,进一步提高硝态氮投加量至15mg/L,系统内硝态氮的积累导致缺氧吸磷率下降。污泥吸磷小试结果表明,经缺氧吸磷驯化后,即使除磷性能欠佳的低浓度电子受体系统污泥也具有良好的反硝化吸磷能力,可见经NO_3~-长期驯化的缺氧吸磷系统有利于筛选以NO_3~-为电子受体的反硝化聚磷菌。  相似文献   

6.
同步硝化反硝化工艺中DO浓度对N2O产生量的影响   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响.控制溶解氧浓度恒定在1、2、2.5和3 mg/L.结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%.DO为2 mg/L时,...  相似文献   

7.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

8.
溶解氧和有机碳源对同步硝化反硝化的影响   总被引:9,自引:5,他引:9  
利用SBR反应器,探讨了溶解氧(DO)和有机碳源(COD)对同步硝化好氧反硝化的影响.结果表明,DO范围在0.5~0.6 mg/L时最适合于同步硝化好氧反硝化脱氮.在同步硝化反硝化过程中出现了亚硝酸盐氮的积累,推断经由短程硝化反硝化途径.总氮的去除率随着COD/N(碳氮比)的增加而增加,当COD/N为10.05时,总氮去除率最高可达70.39%.继续增加碳氮比时,总氮去除率增加不多,并且还会导致硝化作用不完全.当存在足够的易降解有机碳源时,能发生完全的好氧反硝化作用.  相似文献   

9.
针对高氨氮低碳氮比(C/N)黑臭水进行脱氮研究,通过硝化菌和反硝化菌共同作用,并在后期耦合铁碳微电解(IC-ME)强化脱氮。单因素控制变量实验表明,硝化菌和反硝化菌在30℃硝化/反硝化效果较优,平均氨氮去除率为71.62%,硝态氮去除率可达到67.52%;在溶解氧(DO)为3 mg/L时硝化效果较好,平均氨氮去除率达到了70.08%;在后期投加150 g/L铁碳填料时,反硝化效果最好,2#和3#反应器硝态氮去除率最高分别提高到了81.78%和91.17%。长时间运行反应器后,氨氮去除负荷达到0.193 kg/(m3·d),化学需氧量(COD)去除负荷达到1.786 kg/(m3·d)。单独的微生物菌种针对高氨氮低C/N黑臭水脱氮还有一定的局限性,通过后期耦合IC-ME,脱氮效率明显提升,总氮(TN)去除率可从45.65%提升到58.91%。  相似文献   

10.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

11.
采用序批式活性污泥反应器(SBR),在富集亚硝态氮氧化菌(NOB)的基础上,考察了DO对连续进水模式下硝化过程中N_2O减量化的影响。结果表明,在污泥氨氧化菌(AOB)和NOB的比耗氧速率(SOUR)分别为(2.36±0.31)、(7.62±0.43)mg/(L·h)条件下,不外加碳源进行小试实验,氨氮均小于1.0mg/L,亚硝态氮均小于0.5mg/L。DO由0.2mg/L增至3.0mg/L过程中,随着DO增加,积累的硝态氮浓度逐渐上升,而累计产生的N_2O浓度先上升后下降。DO为0.2mg/L时,积累的硝态氮和累计产生的N_2O浓度最低,可以实现N_2O的最大减量化。在进水连续投加氨氮的方式下,氨氮氧化速率不是引起N_2O生成的关键步骤,碳源缺乏的情况下NOB硝化系统中低DO可以有效控制N_2O的释放。  相似文献   

12.
垃圾渗滤液中含有大量易被微生物利用的挥发性脂肪酸,若其可以作为城镇污水处理厂的补充碳源,将对降低碳源投加成本和实现垃圾渗滤液的资源化利用有重要意义。在实际城镇污水处理厂考察了垃圾渗滤液补充进水碳源的脱氮效果,并进一步对比了传统碳源(甲醇、乙酸钠)、垃圾渗滤液及垃圾渗滤液在不同pH条件下产生的水解酸化液作为碳源时的反硝化效果。结果表明,实际城镇污水处理厂投加乙酸钠作为补充碳源时总氮去除率仅提高3%左右,而在进水中混合垃圾渗滤液后提高了约10%。垃圾渗滤液与乙酸钠作碳源时NO_3~--N去除率均97%,但垃圾渗滤液为碳源时最大比反硝化速率高达8.8 mg·(g·h)~(-1)(以MLSS计),是乙酸钠为碳源时的1.7倍;垃圾渗滤液中性和碱性水解酸化液为碳源时,反硝化效果相差不大,最大比反硝化速率为4.5~4.8 mg·(g·h)~(-1)(以MLSS计),NO_3~--N去除率仅为70%左右。垃圾渗滤液或其水解酸化液是否可以作为强化脱氮效果的补充碳源取决于基质本身的性质。  相似文献   

13.
采用ASBR厌氧氨氧化(ANAMMOX)反应器,考察了不同C/N(NH+4-N)比时厌氧氨氧化与反硝化协同脱氮性能表现,并与无机环境下反应器的脱氮性能相比较。研究结果表明,C/N比决定了ANAMMOX/反硝化耦合反应的发展方向。当C/N0.33时,ANAMMOX为主导反应;当C/N=0.67时,耦合反应的效果最佳,NH_4~+-N和NO_2~--N的去除率分别为92%、95%、COD去除率大于96%,实现了氨氮及COD的同时去除;当C/N=1.33时,反硝化反应逐渐占据优势;当C/N2.96时,反硝化作用成为主导反应,厌氧氨氧化反应受到明显抑制,氨氮去除率下降。采取批次实验方法研究了厌氧氨氧化与反硝化协同反应的动力学特性。用基质抑制动力学Haldane模型拟合不同基质浓度下的厌氧氨氧化活性,得到氨氮最大比增长速率为0.09 kg/(kg·d)(以VSS计),半饱和常数为8.4 mg/L、半抑制常数为1 198.2 mg/L;亚硝态氮最大比增长速率为0.27 kg/(kg·d)(以VSS计),半饱和常数为10.2 mg/L、半抑制常数为300.1 mg/L。采用Monod模型和Haldane模型分别拟合不同COD浓度和亚硝酸盐浓度下的反硝化性能,得到反硝化亚硝态氮最大比增长速率为0.2 kg/(kg VSS·d),半饱和常数为17.4 mg/L、半抑制常数为128.4 mg/L,COD半饱和常数为83.3 mg/L。  相似文献   

14.
讨论了影响同步硝化反硝化反应的各参数,并进行了单因素实验与正交实验,获得了同步硝化反硝化生物脱氮工艺运行的最佳条件:DO浓度控制在0.5~2 mg/L,COD浓度为600~800mg/L,混合液悬浮固体(MLSS)为5000 mg/L,pH值在8.0左右,反应时间为6 h.在此条件下,氨氮及COD的去除率都较高,分别达85%和95%,总氮去除率为68 5%.  相似文献   

15.
具有异养硝化-好氧反硝化特性的粪产碱杆菌(Alcaligenes faecalis No.4)直接处理污泥厌氧消化液中的高浓度氨氮时,在60 h内氨氮(原始浓度441 mg/L)去除率约为18%。沼液中碳源验证实验表明,乙酸可作为其优质碳源。因而,可以通过外加乙酸钠的方式来解决污泥厌氧消化液碳源不足的问题。当污泥消化液中添加足够的碳源-乙酸钠使得C/N为10时,Alcaligenes faecalis No.4的脱氮效果良好,氨氮的去除率达到了98%以上。研究结果表明,在利用粪产碱杆菌处理高浓度氨氮沼液时,酸化污泥作为外加碳源的方式具有其理论可行性。  相似文献   

16.
晚期垃圾渗滤液短程硝化影响因素研究   总被引:1,自引:2,他引:1  
采用固定化微生物曝气生物滤池(I-BAF),探讨了水力停留时间(HRT)、游离氨(FA)、pH、溶解氧(DO)对晚期垃圾渗滤液短程硝化的影响和碳氮比(C/N)对同步脱氮的影响。试验结果表明,在HRT为2 d,对应氨氮负荷为0.26~0.3 g/L·d,保持出水FA在1 mg/L以上,pH在79左右,DO控制在1.3±0.2 mg/L时,最利于实现短程硝化。DO是影响短程硝化的决定性因素,DO>1.6 mg/L时,短程硝化可能向全程硝化转化。投加碳源NaAc并控制C/N在1.6~2.2,可以使部分亚硝氮直接通过同步反硝化去除,提高总氮去除率。  相似文献   

17.
侧沟式一体化OCO工艺中DO和C/N对同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
以自配模拟生活污水为处理对象,研究了不同DO和C/N对侧沟式一体化OCO反应器同步硝化反硝化和COD降解效果的影响。实验结果表明,维持进水COD均值约为300 mg/L,TN约为40 mg/L,MLSS约为2 600 mg/L,进水流量为20 L/h时,COD去除率随着DO的增大逐步提高,当好氧区DO均值约为2.0 mg/L时,同步硝化反硝化效果最好,TN去除率达到了80%以上;维持好氧区DO均值约为2.0 mg/L,MLSS约为2 600 mg/L,进水流量为20 L/h时,不同C/N对COD去除率影响不大,当进水C/N约为8时,同时硝化反硝化效果最好,TN去除率均值达到了82%。  相似文献   

18.
在高氨氮废水中,为了实现序批式活性污泥反应器(SBR)短程硝化的快速启动及稳定运行,采用DO与游离氨(FA)联合控制的策略进行调控。结果表明:控制DO为1.42~1.53mg/L,曝气时间为3.5h,将初始FA平均值从1.75mg/L提高至8.74mg/L,经过30d的运行,亚硝酸盐氮积累率达到75.71%,氨氮去除率稳定在80%左右,可以实现快速启动;进一步将DO提高至1.77~1.90mg/L,曝气时间降低至2.5h,可实现长达61d的稳定运行,氨氮平均去除率维持在85.70%,亚硝酸盐氮积累率平均达到91.80%。因此,FA和DO联合调控可抑制亚硝酸盐氧化菌活性,促进氨氧化菌增殖,可以实现短程硝化的快速启动及稳定运行。  相似文献   

19.
以红薯浸泡液为碳源的生物反硝化   总被引:3,自引:1,他引:2  
梅翔  占晶  沙昊  谢玥  朱瑾 《环境工程学报》2010,4(5):1032-1036
为选择低碳氮比污水生物脱氮中合适的碳源,以搅拌罐浸泡淀粉类物质释放碳源,在确定利用红薯浸泡液为碳源后,以浸没式生物滤池为反应器进行生物反硝化实验。实验结果表明:20 g红薯置于2 L自来水中,采用250 r/m in的搅拌速度,搅拌频率为每搅拌3 h停1 h,2 d后得到的浸泡液COD浓度平均为5 921 mg/L,最高可超过7 000 mg/L;将此红薯浸泡液和污水以1∶50的流量比例,采用分别投加的方式进入反应器,污水中总氮、硝酸盐氮、亚硝酸盐氮及氨氮的平均去除率分别为88.6%、91.6%、88.2%和54.8%,出水COD平均在30 mg/L以下;在红薯浸泡液COD浓度为5 700 mg/L左右时,进水中亚硝酸盐氮浓度与硝酸盐氮浓度比为3∶2时总氮去除率为95.3%,当该比例为2∶3时总氮去除率为88.2%。研究表明,红薯浸泡液是一种经济合适的碳源,采用红薯浸泡液作为低碳氮比污水生物处理中反硝化的碳源是可行的。  相似文献   

20.
研究发现嗜热螯台球菌(Chelatococcus daeguensis)TAD1具有同步硝化反硝化性能,可将水中的氨氮去除。重点考察50℃下,碳氮比、碳源、初始pH值、DO浓度等因素对菌株TAD1同步硝化反硝化脱氮性能的影响规律及菌株TAD1的耐氨能力,最后用Minitab软件进行综合优化。结果表明,菌株TAD1在高浓度氨氮(500~3 000 mg/L)下仍具有很高的脱氮能力,pH值和碳源用量是影响TAD1同步硝化反硝化最显著的因素,综合优化后总氮最大去除率达到了70%,证实利用菌株TAD1的同步硝化反硝化性能具有潜在的废水脱氮应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号