首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蒋绍阶  王洪武 《环境工程学报》2019,13(10):2347-2356
采用常温搅拌法,在聚苯乙烯磺酸钠(PSS)处理过的Fe_3O_4表面诱导生长ZIF-8壳层,成功合成了磁性核壳金属有机骨架Fe_3O_4@ZIF-8,并对其吸附去除偶氮染料刚果红的性能进行了探究,考察了刚果红初始浓度和接触时间、Fe_3O_4@ZIF-8投加量以及pH对刚果红去除的影响。SEM、TEM、XRD、FT-IR及VSM表征结果证明,ZIF-8纳米颗粒已成功负载于Fe_3O_4表面,形成了典型的核壳结构,并且具有优异的磁学性能。吸附实验结果表明,反应最佳pH为6,吸附剂投加量为500 mg·L~(-1);当反应时间达到180 min时,吸附达到平衡。吸附反应的吸附动力学和吸附等温线分析表明,刚果红染料在Fe_3O_4@ZIF-8上的吸附动力学符合二级动力学方程,吸附等温线符合Langmuir模型。Fe_3O_4@ZIF-8吸附剂对刚果红具有高效的选择吸附性能并且在循环吸附中展现出良好的循环吸附性能。因此,磁性核壳金属有机骨架Fe_3O_4@ZIF-8作为吸附剂在去除刚果红染料方面有着广阔的应用前景。  相似文献   

2.
众所周知,纳米颗粒在去除水中污染物的过程中易团聚,还会造成水体的二次污染。磁性Fe_3O_4纳米颗粒因其能迅速从水中分离的特性而被广泛关注。改性之后的磁性Fe_3O_4纳米颗粒在水中污染物的去除方面有很好的应用。对磁性Fe_3O_4纳米颗粒及其载体或复合物的制备方法进行了概述,重点对水中污染物的去除从3个方面进行了阐述:磁性Fe_3O_4纳米材料对水中重金属的吸附、有机物的吸附及水中细菌和医疗废物的处理。  相似文献   

3.
利用壳聚糖改性磁性Fe_3O_4以提高其对重金属Pb(Ⅱ)和Cd(Ⅱ)的吸附性能,考察了改性前后磁性Fe_3O_4对Pb(Ⅱ)、Cd(Ⅱ)的吸附等温线及吸附动力学过程。结果表明,经壳聚糖改性后,壳聚糖-磁性Fe_3O_4比表面积大幅增加,由原来的76.12m2/g增加到142.67m2/g;壳聚糖-磁性Fe_3O_4对Pb(Ⅱ)、Cd(Ⅱ)的吸附性能优于磁性Fe_3O_4;当pH为2.0~7.0时,提高pH有助于促进两种磁性材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附量;两种磁性材料对Pb(Ⅱ)和Cd(Ⅱ)的吸附符合准二级动力学模型,吸附过程属于吸热过程;重复吸附—脱附循环再生5次后,壳聚糖-磁性Fe_3O_4对Pb(Ⅱ)、Cd(Ⅱ)的去除率仍在80%以上,磁性Fe_3O_4对Pb(Ⅱ)、Cd(Ⅱ)的去除率在75%以上,两种磁性材料再生性能较好。  相似文献   

4.
以实验室制备的Fe_3O_4-TiO_2·n H_2O·Al吸附剂处理模拟和实际含氟废水,探讨了吸附剂用量、体系p H、吸附温度和吸附时间等因素对F-吸附效果的影响。结果表明:在初始F-浓度16.1 mg/L,起始p H 8.0,吸附剂投加量5 g/L,室温(约25℃)下吸附15 min时,模拟和实际废水的出水F-均可达到10 mg/L的《电镀污染物排放标准》和《污水综合排放标准》,且吸附剂的容量都在1.6 mg/g左右,显示Fe_3O_4-TiO_2·n H_2O·Al具有一定的实际应用价值。含氟水溶液初始p H对Fe_3O_4-TiO_2·n H_2O·Al吸附F-性能影响较大。在p H介于3.0~5.0时,吸附容量较大,过高或过低都会导致吸附容量降低。Fe_3O_4-TiO_2·n H_2O·Al吸附F-的过程为放热反应,升温不利于F-的吸附。该吸附剂吸附F-的过程为化学吸附,符合准二级动力学模型,等温线拟合接近Freundlich吸附等温线。  相似文献   

5.
为了解决水体中Pb(Ⅱ)污染问题,利用SiO_2和半胱氨酸(Cys)对Fe_3O_4纳米粒子进行表面修饰,并用于水中Pb(Ⅱ)的去除研究。实验结果表明,Fe_3O_4@SiO_2@Cys的吸附效果明显优于另外两种未修饰Cys的磁性纳米材料(Fe_3O_4和Fe_3O_4@SiO_2)。当Fe_3O_4@SiO_2@Cys投加量为1.0g/L,pH=6.0,Pb(Ⅱ)初始质量浓度为100mg/L,吸附时间为30min时,水中Pb(Ⅱ)去除率可达到95%以上。在Cd(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)共存条件下,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的吸附效果明显优于其他3种金属离子。经5次循环使用后,Fe_3O_4@SiO_2@Cys对Pb(Ⅱ)的去除率仍保持在80%左右。  相似文献   

6.
采用水热法制备磁性羟基氧化铝(γ-AlOOH@SiO_2/Fe_3O_4),使用透射电子显微镜、X射线衍射、比表面积分析对其进行形貌表征,并研究了其对水体中Cu~(2+)的吸附性能。结果表明:γ-AlOOH@SiO_2/Fe_3O_4对水体中Cu~(2+)的吸附性能受pH、Cu~(2+)初始浓度、接触时间和温度的影响;γ-AlOOH@SiO_2/Fe_3O_4对Cu~(2+)的吸附符合Freundlich等温线方程,最大吸附量可达284.77mg/g;热力学分析表明,γ-AlOOH@SiO_2/Fe_3O_4对水体中Cu~(2+)的吸附过程是自发和吸热过程;动力学分析说明,该吸附过程遵循准二级动力学反应模型,该吸附过程为化学吸附,内扩散是整个吸附过程的限速步骤;Cu~(2+)吸附率随循环使用次数的增加稍有下降,吸附的Cu~(2+)可通过乙二胺四乙酸二钠(EDTA-2Na)脱附。  相似文献   

7.
在茶渣上通过化学共沉淀制备环境友好、价格低廉的磁性纳米粒子Fe_3O_4-茶复合物。结果显示,茶渣修饰提高了磁性Fe_3O_4纳米粒子(Fe_3O_4MNPs)在水中的分散性和稳定性,促进了Fe_3O_4MNPs对水中重金属的去除能力;Cu(Ⅱ)和Pb(Ⅱ)的吸附归因于Fe_3O_4-茶复合物中丰富的结合位点(如—OH,—COOH和—NH—)与Cu(Ⅱ)和Pb(Ⅱ)形成稳定的络合物。在pH为7.0,Cu(Ⅱ)、Pb(Ⅱ)初始质量浓度为100mg/L,吸附时间为2h时,Fe_3O_4-茶复合物对Cu(Ⅱ)、Pb(Ⅱ)的吸附率分别为94.58%、94.28%;Cu(Ⅱ)、Pb(Ⅱ)的吸附过程符合准二级动力学方程,Fe_3O_4-茶复合物在连续4次循环再生后,仍表现出较好的吸附能力。利用柱吸附法考察了进液流速对穿透曲线的影响,结果表明:随进液流速增加,穿透点前移,且Cu(Ⅱ)的吸附能力低于Pb(Ⅱ)的吸附能力。  相似文献   

8.
用氯化十六烷基三甲铵(Cetyltrimethylammonium chloride,CTAC)修饰铁氧化物Fe_2O_3,得到氨基复合的铁氧化物纳米材料(Fe_2O_3@CTAC)并研究了其对As(Ⅴ)的吸附去除性能及机理。CTAC修饰不会改变Fe_2O_3的物理化学结构,而形成的Fe_2O_3@CTAC不仅可以通过铁氧化物表面络合作用吸附As(Ⅴ),复合材料表面的氨基也可以通过静电作用吸附As(Ⅴ)。因而复合材料对As(Ⅴ)的吸附去除效果显著提升,饱和吸附容量可以达到23.13 mg·g~(-1)。Fe_2O_3@CTAC吸附As(Ⅴ)可以在2 min内达到平衡,符合拟二级动力学模型和two-site Langmuir模型。在pH为3~9的范围内,Fe_2O_3@CTAC均能有效吸附去除As(Ⅴ),去除率均能达到90%以上。天然有机质和硫酸根、碳酸氢根、硅酸根对As(Ⅴ)在Fe_2O_3@CTAC上的吸附没有明显的抑制作用。磷酸根由于与As(Ⅴ)存在竞争吸附作用而抑制As(Ⅴ)的吸附,然而在通常水体磷酸根浓度条件下,Fe_2O_3@CTAC对As(Ⅴ)的去除率依然达到90%以上。此外,Fe_2O_3@CTAC可以再生并重复利用,经过5次循环利用后As(Ⅴ)的去除率能够保持在85%以上。  相似文献   

9.
以二甘醇/乙二醇醇热法制备了超顺磁性纳米Fe_3O_4,采用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)以及磁滞回线等手段对制备的纳米Fe_3O_4进行表征,并通过纳米Fe_3O_4/H_2O_2类Fenton反应降解罗丹明B废水考察了纳米Fe_3O_4/H_2O_2的性能及其稳定性。研究表明,制备的纳米Fe_3O_4不仅分散性好、规整球状结构,磁性强且粒径比较均匀,平均粒径约为80 nm;从单因素实验(纳米Fe_3O_4投加量、H_2O_2/Fe_3O_4的摩尔比、pH以及反应时间)与正交实验获得了最佳反应条件:纳米Fe_3O_4投加量为2 g·L~(-1),pH=4,H_2O_2/Fe_3O_4摩尔比为4∶1,反应时间为3 h,此时罗丹明B与TOC去除率分别为100%和35%。重复4次使用纳米Fe_3O_4,通过表征发现纳米Fe_3O_4颗粒的晶体结构不变但是发生了团聚,纳米Fe_3O_4的催化性能有所下降。  相似文献   

10.
为研究磁性硅球(Fe_3O_4@SiO_2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR(编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L~(-1)的纳米Fe_3O_4和Fe_3O_4@SiO_2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe_3O_4@SiO_2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe_3O_4@SiO_2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70天时,3号反应器内PN和PS含量分别为318.89 mg·g~(-1)和28.51 mg·g~(-1),污泥沉降指数(SVI)为35.22 mL·g~(-1),性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)~(-1)和5.84 mg·(L·h)~(-1),对TP去除速率分别为0.44 mg·(L·h)~(-1)和0.51 mg·(L·h)~(-1)。由此可见,经SiO2包覆后所制备的Fe_3O_4@SiO_2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR活性污泥脱氮除磷性能影响提供参考。  相似文献   

11.
磁性还原石墨烯的制备及其对抗生素的吸附性能   总被引:1,自引:0,他引:1  
针对日益突出的抗生素水污染问题,利用共沉淀法制备磁性还原石墨烯(rGO/Fe_3O_4),并研究其对污染物去除性能。通过考察pH、吸附时间、污染物浓度等影响因素,研究rGO/Fe_3O_4对四环素(TC)和磺胺嘧啶(SDZ)2种典型抗生素的吸附性能,并分析吸附机理。实验结果表明:rGO/Fe_3O_4对2种抗生素具有很好的吸附能力,对TC和SDZ的最佳吸附pH分别在4.0和5.0左右,对应的最佳吸附量分别达到(114.29±1.60)和(20.64±2.17)mg·g~(-1);对TC的吸附效果要好于SDZ。rGO/Fe_3O_4对2种抗生素污染物的吸附更符合准二级反应模型,表明吸附过程是由化学反应控制,而不是物理扩散控制,通过计算可知,TC的吸附速度要快于吸附SDZ。rGO/Fe_3O_4对TC和SDZ的吸附过程更接近Langmuir吸附等温方程,模拟的最大吸附量分别为123.46和28.49 mg·g~(-1),与实测值很吻合。rGO/Fe_3O_4具有优良的磁性分离效果,可以快速完成与液相污染物的分离;对rGO/Fe_3O_4吸附2种抗生素的机理主要包括π-π共轭作用、氢键作用、静电作用以及范德华力等,这些作用力使rGO/Fe_3O_4对抗生素具有优良的吸附性能。  相似文献   

12.
为了研究吸附剂在饮用水中除磷控菌效果,在聚丙烯(PP)纤维上负载氧化镧(La_2O_3)纳米颗粒,并用聚乙烯亚胺(PEI)对吸附剂表面进行亲水改性,制备出PEI/La_2O_3/PP纤维吸附材料,使用X射线衍射分析(XRD)对其进行了表征。实验结果表明:偏酸性条件有利于磷的吸附,溶液中共存离子对吸附效果的影响不大;当温度为45℃时,PEI/La_2O_3/PP对磷的饱和吸附容量达到76.67 mg·g-1,吸附过程能够较好地拟合Langmuir模型;吸附动力学过程能够较好地拟合准二级反应动力学方程。该吸附材料对饮用水中的微量磷具有良好的吸附去除效果,磷深度去除后能达到明显的抑菌效果。  相似文献   

13.
选用对空气和人居环境具有污染的悬铃木果毛为基质,通过将四氧化三铁磁性纳米粒子在多巴胺改性悬铃木果毛表面的固载,制备得到具有中空结构的Fe_3O_4@改性悬铃木果毛复合吸附材料。用X射线衍射仪(XRD)、能谱(EDS)、电子扫描电镜(SEM)、红外光谱(FT-IR)和震动样品磁强计(VSM)等手段对样品进行了表征和分析,考察了Fe_3O_4@改性悬铃木果毛复合中空纤维对亚甲基蓝的吸附性能。结果表明:通过多巴胺对悬铃木果毛的化学改性,有效促进了反尖晶石型结构的四氧化三铁纳米粒子在其表面的固载,Fe_3O_4@改性悬铃木果毛复合中空纤维直径约为25.8μm,其饱和磁化强度为12.51 emu/g,Fe_3O_4@改性悬铃木果毛对亚甲基蓝的吸附在140 min达到平衡,吸附容量可达12.6 mg/g,吸附动力学符合准二级动力学。  相似文献   

14.
采用化学沉淀法与液相复合方法联合制备磁性无机-有机Fe_3O_4/纤维素复合材料。采用扫描电镜及红外光谱对其进行结构表征,以亚甲基蓝溶液为模拟废水,考察了接触时间、溶液初始pH及反应温度等因素对其吸附性能的影响,分别用准一级动力学和准二级动力学方程对数据进行拟合。结果表明,温度为22℃,溶液初始pH为7.55,Fe_3O_4/纤维素纳米复合材料加量为0.67 g·L~(-1),接触时间2 h,30 mg·L~(-1)亚甲基蓝脱色率达99.20%,准二级动力学模型能更好地描述Fe_3O_4/纤维素复合材料对亚甲基蓝的吸附行为。同时,Fe_3O_4/纤维素纳米复合材料具有较强的磁性,可通过简单的磁铁吸引作用进行分离。  相似文献   

15.
为去除水中Sb(Ⅲ),采用改进的共沉淀法制备抛光污泥掺杂Fe_3O_4吸附剂(HCO/Fe_3O_4),并采用海藻酸钠(SA)固化交联形成HCO/Fe_3O_4复合微球吸附剂(SAB);利用吸附序批实验考察了pH、温度和共存离子对SAB吸附Sb(Ⅲ)效果的影响。结果表明,制备SAB的HCO/Fe_3O_4和SA最佳质量分数分别为2.5%和2.0%。在pH为7,温度为25℃时吸附72h,投加4.0g/L SAB对初始质量浓度为20.0 mg/L的Sb(Ⅲ),去除率达到80%以上。NO_3~-和SO_4~(2-)对SAB吸附Sb(Ⅲ)没有显著影响,而10mmol/L PO_4~(3-)对SAB吸附Sb(Ⅲ)有微弱的促进作用。SAB对Sb(Ⅲ)的吸附符合Langmuir模型和准二级动力学模型,吸附过程结合了化学吸附(离子交换)与物理吸附(扩散反应)作用。  相似文献   

16.
以FeCl_2·4H_2O和FeCl_3·6H_2O为原料采用共沉淀法制备Fe_3O_4磁性纳米粒子,在其表面修饰聚乙二醇2000(PEG-2000),在所得的修饰了PEG-2000的Fe_3O_4磁性纳米粒子溶液中加入模板分子噻吩磺隆、交联剂正硅酸乙酯和催化剂氨水,水解后制得印迹了噻吩磺隆的Fe_3O_4@PEG@SiO2人工抗体。用体积比为1:4的乙酸和丙酮溶液为洗脱剂,洗脱位于SiO_2壳层中的印迹分子,形成具有与印迹分子结构、大小和功能基团互补的特异性识别位点空穴。制备的Fe_3O_4@PEG@SiO_2人工抗体对目标分析物噻吩磺隆分子选择性识别和吸附,对噻吩磺隆的最大饱和结合量为41.28 mg·g~(-1),前30 min内,其吸附速率为0.45 mg·(min·g)~(-1),分别是非印迹方法的5.34倍和3.46倍。  相似文献   

17.
采用环氧氯丙烷和二乙烯三胺对花生壳中纤维素进行改性,制备了二乙烯三胺花生壳纤维素(DMPSC),运用红外光谱(FTIR)进行表征,并探究了DMPSC对刚果红的吸附性能和机理。结果表明,DMPSC的吸附率明显高于其他吸附剂。在原始p H,吸附剂用量为1 g·L~(-1),吸附时间为180 min,温度为8、30和50℃时,100 mg·L~(-1)的刚果红溶液吸附量分别达到83.24、99.04和99.78 mg·g-1。吸附过程符合Langmuir等温线模型,在8℃时饱和吸附量(qm)为111.86 mg·g-1。准二级动力学方程能更好地描述吸附动力学过程,表观活化能Ea为56.88 k J·mol-1,升高温度有利于DMPSC对刚果红的吸附,该过程属于化学吸附。  相似文献   

18.
通过稀硫酸活化凹凸棒黏土,再与高黏土混合,制备颗粒黏土吸附剂。通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、N_2吸附-脱附等温线和傅里叶红外光谱(FT-IR)对吸附剂粉末进行表征测试。结果表明:凹凸棒黏土由水硅锰钙石(Kittatinnyite)、坡缕石(Palygorskite)和石英(Quratz)3种成分组成;黏土表面呈杂乱堆积的纤维状和针棒状,比表面积高达126.43 m~2·g-1;动力学吸附数据符合准二级动力学模型和离子内扩散模型,热力学吸附数据符合Langmuir吸附模型,在323 K时,最大吸附量达到153.85 mg·g-1;颗粒吸附剂对印染废水中亚甲基蓝具有较好的吸附性能,是一种具有发展前景的新型吸附材料。  相似文献   

19.
三维有序大孔钴锰尖晶石催化剂(3DOMCoMn_2O_4)以及三维有序大孔镧、铈掺杂的钴锰尖晶石催化剂(3DOMR_xCo_(1-x)Mn_2O_4(R=Ce, La))由胶晶模板法成功合成。通过对所得的催化剂在NO_x协助下的碳烟催化氧化活性评价,优化了Ce/Co和La/Co的配比。此外,还对目标催化剂进行了XRD、N2吸脱附、Raman、H_2-TPR、SEM、XPS等表征。结果表明:3DOM结构增强了催化剂与碳烟颗粒之间的接触,对碳烟氧化等"固-固-气"非均相催化反应具有明显的提升作用。此外,铈和镧的掺杂增大了活性氧物种的浓度,从而增强了钴锰尖晶石催化剂的催化氧化能力。在松散接触工况下,3DOM Ce_(0.9)Co_(0.1)Mn_2O_4的Tig(起燃温度)和T_m(CO_2出口浓度最大时的温度)分别为285℃和377℃,3DOM La_(0.3)Co_(0.7)Mn_2O_4的T_(ig)和T_m分别为287℃和376℃。  相似文献   

20.
以溶剂热法制备了Co0.5Ni0.5Fe2O4纳米吸附剂,用透射电子显微镜(TEM)、X-射线衍射(XRD)、BET比表面仪、磁强计等分析了结构特性。结果表明,Co0.5Ni0.5Fe2O4纳米吸附剂为非晶态,比表面积为426.8 m2/g,饱和磁化强度为10.4 emu/g,且靠外磁场易回收。Co0.5Ni0.5Fe2O4吸附处理水中五氯苯酚时,吸附动力学符合Langergren模型,平衡吸附量为27.87 mg/g;吸附等温线符合Freundlich模型。Co0.5Ni0.5Fe2O4纳米吸附剂的吸附量随煅烧温度升高吸附量明显降低,随Ni含量的增加先增加后平稳趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号