首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
饮用水源突发性铬污染去除方法的比较研究   总被引:1,自引:0,他引:1  
通过对水源水中铬污染的不同去除方法的比较实验及验证实验,研究pH值、FeSO_4、NaHSO_3和活性炭的投加量对铬的去除效果的影响。实验结果表明,当原水中铬的含量为0.5 mg/L时,未调节pH值的条件下,亚硫酸氢钠与活性炭对铬的最高去除率为50%左右;硫酸亚铁还原沉淀在FeSO_4·7H_2O:Cr~(6+)投加比=16:1时,滤后出水中Cr~(6+)的去除率达到96.8%,中试出水中未检出Cr~(6+),出水的总Cr、总Fe等指标完全达到《生活饮用水卫生标准》(GB 5749-2006)的要求。  相似文献   

2.
采用大孔树脂白球固定化微生物强化SBR处理含对Ep苯胺废水,与对照组相比,通过投加大孔树脂白球固定化微生物可以有效提高反应器的处理效率。在进水TOC为434.8mg/L,对甲苯胺为326.9mg/L的条件下,强化组可在180min内将TOC和对甲苯胺基本去除完全,去除率在98%以上,对照组则需要300min才能达到相同的去除效果。强化组对氨氮的去除同样具有较好的处理效果。  相似文献   

3.
采用新型固定化载体大孔吸附树脂X-5固定化微生物强化SBR处理对甲苯胺模拟废水,与对照组相比,通过投加大孔吸附树脂X-5固定化微生物可以有效提高反应器的处理效率.在进水TOC浓度为434.8 mg/L,对甲苯胺浓度为326.9 mg/L的条件下,强化组可在100 min左右将TOC和对甲苯胺基本去除完全,去除率在99%以上.对照组则需要300min才能达到相近的去除效果.强化组对氨氮同样具有较好的硝化效果,出水氨氮浓度在10 mg/L以下.  相似文献   

4.
聚合氯化铝与粉末活性炭联合强化混凝处理垃圾渗滤液   总被引:1,自引:0,他引:1  
研究了联合粉末活性炭与聚合氯化铝(PAC)强化混凝对垃圾渗滤液原水的处理效果。结果表明,在原水COD为4 100 mg/L、浊度为147 NTU、UV254为20的条件下,粉末活性炭的加入可以有效增加垃圾渗滤液中有机物的去除率,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,COD的去除率由21.6%提高到29.1%,UV254去除率由29.8%提高到39.9%,剩余浊度由138 NTU降到133 NTU。该强化混凝过程使原水中溶解性小分子有机物的去除率提高显著,PAC投加量为0.6 g/L时,投加0.6 g/L粉末活性炭,在分子量小于1 kDa的范围内,UV254去除率由2.9%上升为10%。  相似文献   

5.
固定化微生物强化处理对甲苯胺模拟废水的研究   总被引:2,自引:0,他引:2  
采用新型固定化载体大孔吸附树脂X-5固定化微生物强化SBR处理对甲苯胺模拟废水,与对照组相比,通过投加大孔吸附树脂X-5固定化微生物可以有效提高反应器的处理效率。在进水TOC浓度为434.8mg/L,对甲苯胺浓度为326.9mg/L的条件下,强化组可在100min左右将TOC和对甲苯胺基本去除完全,去除率在99%以上。对照组则需要300min才能达到相近的去除效果。强化组对氨氮同样具有较好的硝化效果,出水氨氮浓度在10mg/L以下。  相似文献   

6.
海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙   总被引:1,自引:0,他引:1  
采用海绵铁(s-Fe0)还原耦合活性炭(GAC)吸附-微波(MW)再生技术降解甲基橙(MO)溶液,重点考察了s-Fe0投加量、粒径、微波功率等因素对MO去除效果的影响。结果表明,s-Fe0投加剂量为15.0 g/L、粒径为3~5 mm、超声波功率为200 W,反应1 h,MO的去除率为94.2%。其次,采用GAC吸附-MW再生技术(800 W,照射1 min)循环处理上述脱色后的MO废水。结果表明,GAC吸附可有效降低废水的生物毒性及残留的染料、TOC和总铁离子浓度,且MW辐射可有效再生吸附饱和的GAC颗粒。因此,s-Fe0还原耦合GAC吸附-MW再生技术可以有效降解MO染料,具有处理效果好、实现资源循环利用等优点。  相似文献   

7.
以我国南方某活性炭-超滤深度处理工艺水厂为研究对象,对工艺过程中三氯乙醛生成潜能(CHFP)及相关有机物指标进行为期1年每月1次的监测,以明晰活性炭-超滤深度处理工艺对CHFP及有机物的去除能力。结果表明:原水CHFP均呈现一定的季节性变化趋势,高温季节(5—9月)相对较高,范围为15.50~64.00μg·L~(-1),活性炭-超滤深度处理工艺对CHFP、TOC、CODMn和UV254去除率范围分别为37.42%~69.12%、25.25%~66.71%、27.33%~61.25%和21.80%~72.46%,平均去除率分别为54.51%、39.21%、45.04%和42.91%;混凝沉淀单元在CHFP和有机物指标去除中均起主要作用,炭滤单元对TOC有较好的去除作用,超滤单元对CHFP和CODMn有较好的去除作用。建议水厂设计与运行中将臭氧与活性炭滤池联合使用,以协同去除CHFP和有机物,进一步提高供水水质。  相似文献   

8.
四种净水工艺对水源水微量有机物去除的研究   总被引:1,自引:0,他引:1  
以UV254和CODMn代表饮用水源水中有机物替代指标.对常规处理、生物陶粒预处理、生物滤池、生物活性炭(BAC)、颗粒活性炭(GAC)、纳滤和光催化氧化进行组合,形成不同的处理流程,研究各流程对UV254和CODMn的去除效果.结果表明,各工艺流程都有一定的处理效率,其中以生物滤池和纳滤为主的组合流程处理效果最佳.此流程对UV254的去除率接近100%,CODMn的去除率达到78.6%,大大提高了饮用水的安全性.  相似文献   

9.
PACT工艺处理PAM生产废水的实验研究   总被引:2,自引:1,他引:1  
采用粉末活性炭活性污泥工艺(PACT)处理经凹凸棒土预处理后的聚丙烯酰胺(PAM)生产废水。实验考察了粉末活性炭(PAC)的投加对活性污泥处理系统的影响,并探讨了PAC投加量、曝气时间、水力停留时间等参数对降解反应的影响。结果表明:PAC的投加能提高水中溶解氧的利用率,改善污泥沉降性能,增强活性污泥系统对有机物的去除效果;在PAC投加量500 mg/L、曝气10 h的条件下,PACT工艺对PAM生产废水的处理效果良好,COD的去除率为80.8%,BOD5去除率为83.8%,丙烯酰胺(AM)去除率为84.2%。  相似文献   

10.
全氟化合物(PFCs)持久存在于水环境中,难以通过传统的水处理工艺去除,提高水中PFCs的去除性能具有重要意义。本研究采用快速小柱实验探究了UV、H2O2和颗粒活性炭(GAC)组合工艺对水中4种PFCs的去除效果,并探究了UV照射时长和H2O2质量浓度对PFCs的直接去除效果及其对后续GAC吸附的影响。结果表明:不同工艺条件下,长链全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)始终表现出较短链全氟丁酸(PFBA)和全氟丁烷磺酸(PFBS)更高的去除率。单独GAC吸附对长链全氟PFOA和PFOS去除率为59.6%和64.3%,但对短链PFBA和PFBS去除率仅为11.7%和13.1%。单独UV或单独H2O2分别与GAC联用时,随着UV照射时长和H2O2质量浓度的增加,4种PFCs的去除率略有增加,且UV照射的增益效果较H2O2更优。UV/H2O2/GAC联用工艺对水中4种...  相似文献   

11.
臭氧/ 生物活性炭深度处理循环养殖废水   总被引:5,自引:0,他引:5  
随着工厂化循环水养殖的不断发展,高浓度循环养殖废水对环境污染日益严重.为实现环境友好和资源节约,采用臭氧/生物活性炭对循环养殖废水进行深度处理中试研究.实验结果表明,臭氧化臭氧最佳投加量为4 mg/L,显著增强水体的可生化性,使TOC(总有机碳)/UV254(在波长为254 nm处的单位比色皿光程下的紫外吸光度)提高80%.臭氧/生物活性炭对循环养殖废水中的有机物和氨氮具有良好的去除效果.臭氧/生物活性炭对TOC、高锰酸盐指数和UV254的最终去除率比生物活性炭分别高11.9%、13.4%和6.5%.臭氧/生物活性炭和生物活性炭对氨氮的最终去除率分别为96.0%、90.7%.  相似文献   

12.
颗粒活性炭深度处理抗生素废水   总被引:4,自引:0,他引:4  
通过静态吸附实验,比较了13种不同材质、粒径的颗粒活性炭(granular activated carbon,GAC)对抗生素废水生化出水的吸附效果,选择KC16活性炭作为处理该废水的活性炭。KC16活性炭的进一步静态实验结果表明,当KC16活性炭投加量为30 g/L,吸附时间为6 h时,处理效果较好,TOC、COD、UV254、色度的去除率分别达到了86.99%、88.43%、89.69%和94.08%,并且污染物质(COD、TOC)的吸附符合Langmuir吸附等温式,吸附动力学符合准二级吸附动力学模型(R2>0.99)。动态吸附结果表明,在滤速为1.0 m/h,柱高为1 200 mm时,出水可以达到GB21903-2008《发酵类工业废水污染物排放标准》,处理每吨抗生素废水的活性炭用量为2.45 kg。  相似文献   

13.
采用零价铁耦合芬顿氧化法处理TNT红水,研究了初始pH、零价铁投加量、过氧化氢(H_2O_2)投加量及温度对红水中总有机碳(TOC)去除效果的影响,同时进行了TOC去除过程中反应动力学的探讨。结果表明,零价铁耦合芬顿氧化体系可有效降解TNT红水中的2,4-二硝基甲苯-3-磺酸钠和2,4-二硝基甲苯-5-磺酸钠。在初始pH为2,温度为20?C的条件下,加入1.5 g·L~(-1)零价铁反应1 h后,再加入100 mL·L~(-1)H_2O_2反应4 h,红水中二硝基甲苯磺酸盐浓度从500 mg·L~(-1)降至0 mg·L~(-1),去除率为100%,TOC浓度从150 mg·L~(-1)降至30 mg·L~(-1),去除率达到80%。反应中TOC的降解过程遵循拟二级反应动力学方程。零价铁耦合芬顿氧化法可以作为TNT红水的有效处理途径。  相似文献   

14.
采用静态实验考察了投加高铁酸钾强化混凝的效果,通过控制不同的絮凝搅拌速率、絮凝时间及原水浊度来强化镍(Ⅱ)和有机物的去除。结果表明,絮凝搅拌速度和时间、原水浊度是影响镍(Ⅱ)和有机物的去除效果的重要因素。原水镍(Ⅱ)质量浓度为1 mg·L~(-1)、TOC为10 mg·L~(-1),在一级絮凝搅拌速率为200 r·min~(-1)、时间为2 min,二级絮凝搅拌速率为40 r·min~(-1)、时间为10 min,原水浊度为36.7 NTU时,出水剩余镍为0.018 mg·L~(-1),去除率达到98.2%,TOC去除率为58.8%,浊度去除率为73.8%。出水可满足《生活饮用水卫生标准》的要求。高铁酸钾强化混凝可作为给水厂应对镍污染的一种有效处理措施。  相似文献   

15.
联合硅藻土与PAC强化混凝处理含藻微污染原水   总被引:1,自引:0,他引:1  
研究了联合硅藻土与聚合氯化铝(PAC)强化混凝对原水中藻类、溶解性有机物以及重金属离子的去除效果。结果表明,硅藻土的投加可以有效地改善絮体的沉降性能,增强藻类的混凝沉淀去除效率,PAC投加量为30 mg/L时,投加0.1 g/L硅藻土,叶绿素a去除率由82.5%提高到95.9%。该强化混凝过程使原水中溶解性有机物特别是大分子有机物和重金属离子的去除率有所上升。PAC投加量为30 mg/L,硅藻土投加量为1.5 g/L时,重金属Cu、Pb和Cd的去除率分别达到57.5%、83.7%和22.2%。  相似文献   

16.
以克浅十污水处理站原水为研究对象,采用混凝沉淀工艺,探讨优选出的复配混凝剂投加量、助凝剂投加量及静置时间对原水中浊度和总铁去除效果的影响.应用Box-Behnken中心组合实验和响应面分析法,建立混凝剂对处理原水的二次多项式数学模型,确定了混凝沉淀去除原水浊度和总铁的优化工艺参数分别为:复配混凝剂投加量为152.15 mg/L、143.84 mg/L,助凝剂投加量为4.14 mg/L、4.32 mg/L,静置时间为11.77 min、11.22 min.在此工艺条件下回归方程得到的浊度和总铁的去除率预测值与实验值接近,且拟合性良好,误差介于3%~5%之间.通过均值内插法,对比浊度和总铁的多元二次回归方程,推导得出的2组最佳工艺条件均能满足浊度和总铁的去除要求.  相似文献   

17.
采用氨吹脱-两级矿化垃圾床组合工艺处理晚期垃圾渗滤液,对出水中的有机物进行分子质量分布及三维荧光特性分析。针对出水有机物特征及14项出水水质指标,提出联合Ac-Fenton技术进行深度处理,并正交分析深度处理的最佳工艺条件。研究结果表明:两级矿化垃圾床对各分子质量DOM的去除均可达70%~80%,且更易于去除可见区类富里酸,但出水仍以5 k Da的小分子富里酸为主;当活性炭投加量为4.0 g·L~(-1),H2O_2投加量为0.15 mol·L~(-1),H2O_2/Fe2+为2∶1,pH为3.0时,Ac-Fenton工艺处理效能达最佳,此时该组合工艺对色度、COD、BOD5及TN去除效能分别达99.2%、97.6%、97.4%、98.1%,且14项水质指标均能满足GB 16889-2008,实现达标排放。  相似文献   

18.
探讨了微生物絮凝剂处理二级出水过程中投加量和pH值对溶解性有机碳和浊度处理效果的影响,及将微生物絮凝剂与聚合氯化铝按不同比例复配后的去除效果及pH值对最佳投药量下去除效果的影响。并使用三维荧光光谱(3DEEM)分析了不同种类的絮凝剂在去除水中溶解性有机物(DOM)时的差别。实验结果表明:微生物絮凝剂的最佳投药量为20 mg·L~(-1),最适pH值为7.5,此时TOC去除率为17%,浊度去除率为45%。最佳复配投药量为微生物絮凝剂10mg·L~(-1)聚合氯化铝20 mg·L~(-1),最适pH值为7,此时TOC去除率为33%,浊度去除率为51%。复配使用对腐殖质有很好的去除效果。  相似文献   

19.
以某环氧树脂生产厂产生的高盐有机废水为对象,对比研究了Fenton、Fenton-混凝、混凝-Fenton等工艺去除废水中有机污染物的效能。考察了Fenton反应中Fe2+、H2O_2投加比、初始pH、反应时间以及混凝反应中混凝剂种类、投加量等参数对处理效果的影响。结果表明:Fenton工艺的最佳条件为亚铁和过氧化氢投加比1∶20,投加量分别为25 mmol·L~(-1)和500 mmol·L~(-1),初始pH 3,反应时间120 min,TOC去除率为62.50%;混凝工艺选择Fe SO_4混凝剂,投加量为300 mg·L~(-1),TOC去除率为23.78%;废水经过Fenton-无混凝剂混凝、Fenton-混凝剂混凝、混凝-一级Fenton氧化和混凝-二级Fenton氧化工艺处理,TOC去除率分别为68.32%、71.51%、80.69%和89.27%。  相似文献   

20.
研究了粉末活性炭、硅藻土和膨润土等3种常用吸附剂对三氯乙醛(CH)的去除作用,并以南方某水源原水为研究对象,分析3种吸附剂对于CH前体物(CH1d和CHFP)的去除效果。结果表明,膨润土和粉末活性炭适用于对CH的去除,最大去除率分别为95.93%和86.86%。225 mg·L-1投加量条件下,前15 min膨润土和粉末活性炭对CH吸附效果最快,2种吸附剂对CH去除率分别为63.36%和51.84%;反应2 h后,对CH的吸附已达到饱和,此时膨润土和粉末活性炭对CH去除率分别为89.36%和61.75%。粉末活性炭和硅藻土适用于对CH前体物的去除,最适投加量均为30 mg·L-1,此时对CH1d和CHFP的去除率分别为57.49%和75.21%、28.27%和50.19%。可根据CH的风险程度高低选择硅藻土或粉末活性炭对CH前体物予以去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号