首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
为探讨内陆山区城市湖北省十堰市冬季PM2.5污染特征及来源构成,于2016年1月12日—2月4日在4个采样点位同步采集PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳的质量浓度.并采集了十堰市主城区城市扬尘、裸露山体尘、建筑水泥尘、燃煤源、机动车尾气、工业源及餐饮油烟源等7类污染源,初步建立十堰市本地的污染源成分谱库,利用统计学方法研究冬季PM2.5的污染特征,并采用CMB受体模型及“二重源解析技术”分析其来源构成.结果表明:冬季采样期间,十堰市ρ(PM2.5)平均值达到110.65 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准24 h浓度限值,并且随空气RH(相对湿度)增加污染加重.城区3个采样点PM2.5化学组成及特征的空间差异不明显.PM2.5中ρ(TC)最高,其次是ρ(NO3-)和ρ(SO42-),与二次反应、机动车尾气、煤燃烧等密切相关.ρ(NO3-)/ρ(SO42-)为1.22,说明机动车尾气的影响较大.二次粒子、燃煤源和机动车尾气是十堰市城区冬季大气PM2.5的主要来源,贡献率分别为51.2%、10.9%和10.1%.研究显示,十堰市城区冬季ρ(PM2.5)超过GB 3095—2012二级标准,PM2.5的污染控制应以二次粒子、燃煤和机动车为主,采取多源控制原则.   相似文献   

2.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

3.
为了明确驻马店市区PM2.5污染特征及贡献源类,2019年1—3月在驻马店市区2个采样点采集PM2.5样品,分析了其化学组分特征;结合PMF和后向轨迹模型构建了PM2.5的时间和空间来源解析方法,并对该解析方法进行应用.结果表明:①采暖季,驻马店市区环境空气中ρ(PM2.5)平均值为117 μg/m3,NO3-和OC是其主导组分;ρ(OC)和ρ(EC)分别达18.2和5.2 μg/m3,且ρ(OC)/ρ(EC)平均值为3.5,说明机动车源和燃煤源的影响较明显.②ρ(SO42-)与ρ(NO3-)相关性显著(R=0.80,P < 0.01),表明SO42-和NO3-具有较高的同源性.③重污染过程中ρ(SNA)(SNA为SO42-、NO3-和NH4+三者统称)平均值为61.5 μg/m3,显著高于清洁期;重污染过程中硫氧化率(SOR)和氮氧化率(NOR)分别达0.42和0.39,说明存在明显的二次离子生成过程.④重污染过程中Si、Al、Mg等地壳类元素的浓度和占比均高于清洁期,说明重污染过程中扬尘源的贡献可能较高.⑤来源解析结果表明,二次源是采暖季PM2.5的最大贡献源,贡献率为32.6%,其次为扬尘和生物质燃烧混合源(26.4%)、机动车源(21.4%)、燃煤源(13.2%)和工业源(6.3%);两次重污染过程中的最大贡献源分别为二次源(54.5%)和机动车源(46.2%),清洁期的主要贡献源主要为二次源(45.2%)和燃煤源(29.8%).从空间变化来看,扬尘和生物质燃烧混合源对天方二分厂的贡献率(29.3%)明显高于对彩印厂的贡献率(23.3%),而燃煤源对彩印厂的贡献率(16.5%)高于对天方二分厂的贡献率(10.1%),其他源类的贡献率相差不大.正东、东南以及西北方向是彩印厂和天方二分厂各类源的主要贡献方向.研究显示:二次源是采暖季、重污染期间和清洁期最大的贡献源;相比于清洁期,重污染期间扬尘和生物质燃烧混合源贡献增加.源类贡献存在空间差异,正东、东南及西北方向是采样点各类源主要贡献方向.   相似文献   

4.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

5.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

6.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

7.
为了研究南京市PM2.5的污染特征及来源贡献,于2018年3月至2019年2月在南京仙林地区进行PM2.5组分的在线监测,运用PMF和CMB受体模型,开展PM2.5的来源解析.结果表明,观测期间南京市PM2.5平均质量浓度为54.3μg/m3,其中冬季平均浓度76.4μg/m3.PM2.5的主要组分为NO3-(21.3%~30.8%)、SO42-(18.9%~23.5%)、NH4+(14.3%~16.2%).从全年平均来看,PMF模型得到的PM2.5解析结果为:二次无机气溶胶(54.9%)、燃煤源(17.4%)、二次有机气溶胶(7.4%)、机动车排放源(7.1%)、工业源(4.9%)、扬尘源(4.8%)、其他源(3.4%);CMB模型得到的PM2.5解析结果为:硝酸盐(33.0%)、硫酸盐(24.0%)、燃煤源(16.4%)、机动车排放源(8.4%)、二次有机气溶胶(7.1%)、扬尘源(5.7%)、其他源(2.9%)、工业源(2.4%).不同季节PM2.5来源有所差异,夏冬季二次无机气溶胶占比大于春秋季,春冬季燃煤占比最大,二次有机气溶胶在秋季占比最大.结合2017年南京市大气污染源排放清单,对二次气溶胶贡献进行再解析,得到南京仙林地区PM2.5主要贡献来自燃煤源(PMF:34.14%,CMB:33.82%),机动车排放源(PMF:27.33%,CMB:29.33%)以及工业源(PMF:26.76%,CMB:24.77%).可见,影响南京仙林地区PM2.5的污染源主要来自燃煤源、机动车排放源和工业源,基于在线组分监测、利用PMF和CMB模型得到的PM2.5源解析结果具有较好的一致性.  相似文献   

8.
无锡市区环境空气中PM10来源解析   总被引:12,自引:8,他引:4  
于2005年采集了无锡市区PM10源和受体样品,并测定了无机元素、水溶性离子和碳等组分的含量. 采用OC/EC〔即ρ(OC)/ρ(EC)〕最小比值法确定了二次有机碳(Secondary Organic Carbon)对PM10的贡献,并据此重新构建了受体化学成分谱,使用化学质量平衡受体模型(CMB)和二重源解析技术对无锡市区的PM10来源进行了解析. 结果表明:城市扬尘是无锡市环境空气中PM10的主要来源,其分担率达50.49%;煤烟尘和机动车尾气尘的分担率也分别为13.97%和7.80%;其他重要源类按分担率依次为二次有机碳,SO42-,建筑水泥尘,NO3-,土壤尘和钢铁尘等,其中二次有机碳年贡献值为6.94 μg/m3,年分担率为6.18%.   相似文献   

9.
2013年9月国务院发布了《大气污染防治行动计划》(简称"《气十条》").基于《气十条》实施前期(2012年5月-2013年5月)和实施后期(2015年9月-2016年9月)在四川省内江市采集的PM2.5及其化学组分,以及2013-2018年空气自动监测站在线监测数据,通过比较分析PM2.5中WSIIs(water-soluble inorganic ions,水溶性离子)和6项常规污染物质量浓度的变化来评估《气十条》实施效果,同时应用PMF(positive matrix factorization,正矩阵因子分析法)模型解析WSIIs源变化以探究空气污染源的改变.结果表明:①2018年内江市ρ(SO2)、ρ(NO2)、ρ(PM10)、ρ(PM2.5)、ρ(O3)和ρ(CO)年均值分别为9.4 μg/m3、23.9 μg/m3、53.1 μg/m3、34.9 μg/m3、140.0 μg/m3和1.1 mg/m3,6项污染物首次全部达到GB 3095-2012《环境空气质量标准》二级标准.②《气十条》实施后期ρ(PM10)和ρ(PM2.5)分别为(74.5±55.1)(63.0±47.0)μg/m3,较实施前期分别下降了36%和20%,说明《气十条》的实施明显改善了空气质量.PM2.5中ρ(SO42-)和ρ(NO3-)分别下降了47%和25%,表明SO2和NOx的排放均得到有效控制;PM2.5中ρ(K+)和ρ(Mg2+)分别增加了66%和92%,这与春节期间燃放烟花爆竹和生物质燃烧有关,因此应加强对重点时段特殊事件的管控.③相较《气十条》实施前期,实施后期ρ(PM2.5)/ρ(PM10)由0.69升至0.84,SOR(sulfate oxidation ratio,硫氧化率)由0.22增至0.25,说明PM2.5和二次污染占比增加.④PMF模型解析结果发现,与《气十条》实施前期相比,实施后期的燃煤-工业源、二次硫酸盐、二次硝酸盐和扬尘源对ρ(PM2.5)的贡献量下降,生物质燃烧源对ρ(PM2.5)的贡献量增加;燃煤-工业源和二次硫酸盐对ρ(PM2.5)的贡献率之和大幅下降,二次硝酸盐和生物质燃烧的贡献率均升高.研究显示,《气十条》的实施使内江市燃煤和工业排放得到显著控制,但机动车和生物质燃烧尚需严控.   相似文献   

10.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   

11.
为研究黄石市大气PM2.5中水溶性离子组成、质量浓度变化特征及来源,于2012年3月-2013年2月在湖北省黄石市利用MiniVol颗粒物采样器采集PM2.5样品,用离子色谱分析了9种水溶性离子(NH4+、Ca2+、Mg2+、Na+、K+、Cl-、NO3-、SO42-、F-)的质量浓度,并采用PMF(正定矩阵因子分析法)模型讨论了不同离子的来源.结果表明:观测期间黄石市大气PM2.5中ρ(总水溶性离子)的年均值为(61.5±26.8)μg/m3,占ρ(PM2.5)的63.9%,各离子质量浓度的高低顺序依次为ρ(SO42-)> ρ(NO3-)> ρ(NH4+)> ρ(Na+)> ρ(Cl-)> ρ(Ca2+)> ρ(K+)> ρ(F-)> ρ(Mg2+).二次无机离子SNA(为SO42-、NO3-和NH4+的统称)是水溶性离子的主要成分,占全部所测水溶性离子的74.4%.ρ(NO3-)/ρ(SO42-)范围为0.12~1.29,平均值为0.53±0.30,说明全年观测点附近主要以固定源污染为主.4个季节的SOR(硫氧化率)和NOR(氮氧化率)均大于0.10,说明黄石市PM2.5中的SO42-和NO3-主要是经二次转化形成的.阴、阳离子相关性研究发现,4个季节阴、阳离子总体相关性(R2为0.98)较好,并且全年PM2.5组分偏酸性.通过PMF模型源解析发现,黄石市大气PM2.5中水溶性离子主要来源于燃烧源、二次转化源和土壤/矿物扬尘源.研究显示,黄石市大气PM2.5中主要水溶性离子成分是SNA,燃烧、二次转化和土壤/矿物扬尘是其主要来源.   相似文献   

12.
菏泽市秋冬季PM2.5水溶性离子化学特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为深入研究菏泽市秋冬季PM2.5中水溶性离子污染特征,于2017年10月15日-2018年1月31日对菏泽市3个监测点同步进行PM2.5的采集和分析,分析探讨了不同污染程度下ρ(PM2.5)及水溶性离子化学特征.结果表明:①菏泽市秋冬季PM2.5呈区域污染特征.②整个观测期间,ρ(PM2.5)范围为26.72~284.10 μg/m3,平均值为103.27 μg/m3,其中水溶性离子对ρ(PM2.5)贡献率较大,为44.65%~49.87%;SNA(NO3-、NH4+、SO42-的统称)的占比较高,SNA占总水溶性离子质量浓度的86.88%,说明二次气溶胶为菏泽市大气PM2.5中的重要组成部分.③SNA三角图解和水溶性离子相关性结果表明,采样期间大气中NO3-、SO42-可能以NH4NO3、(NH42SO4形式存在;ρ(Cl-)与ρ(K+)相关性较高(清洁天和污染天的相关系数分别为0.79和0.81),由此推测Cl-与K+具有同源性,二者主要源于生物质燃烧.④重度及以上污染天的SOR(硫氧化率)和NOR(氮氧化率)分别为0.54和0.37,分别是清洁天的2.08和2.06倍;轻/中污染天的SOR和NOR分别为0.37和0.29,分别是清洁天的1.42和1.61倍.随着污染程度的加重,SO2和NO2向SO42-和NO3-的二次转化增强.重污染日SOR、NOR和相对湿度均大于清洁天和轻/中度污染天,而温度则未表现出相似的变化趋势,说明非均相反应是菏泽市秋冬季SO42-和NO3-形成的重要原因.研究显示,菏泽市污染呈区域性污染特征,二次气溶胶是菏泽市大气PM2.5的重要组成部分,污染天ρ(NO3-)、ρ(SO42-)、ρ(NH4+)均与相对湿度呈显著正相关(P < 0.05),均与温度呈负相关,表明在污染天高湿低温对SO2、NO2转化为SO42-、NO3-有推动作用.   相似文献   

13.
焦作市是京津冀地区"2+26"通道城市之一.为研究焦作市大气污染特征,于2016年1月-2018年2月使用3个国控站点(马村区生态环境局、焦作市生态环境局和高新区政府)大气环境监测数据,以及2018年1月焦作市边界站PM2.5及其化学组分(水溶性离子和碳组分)监测数据进行分析.结果显示:焦作市大气污染以PM2.5污染为主,2017年ρ(NO2)、ρ(PM2.5)、ρ(PM10)、ρ(CO)和ρ(SO2)平均值分别为42.4 μg/m3、79.0 μg/m3、136.5 μg/m3、1.42 mg/m3和38.3 μg/m3,较2016年分别下降了10.5%、10.6%、11.2%、20.7%和37.6%.在时间分布上,大气污染物质量浓度日变化具有明显的季节性特征,春、夏两季ρ(NO2)日变化较秋、冬两季呈更宽的"U型",ρ(SO2)峰值出现在12:00左右,推测原因与夜间高架源排放有关;在空间分布上,本地一次污染排放可能主要来自市区工地扬尘、西南地区交通源和东部污染点源.观测期间,ρ(NO3-)、ρ(NH4+)和ρ(SO42-)较高,平均值分别为39.42、23.66和23.01 μg/m3,分别占水溶性离子质量浓度的41.8%、25.1%和24.4%,占ρ(PM2.5)的27.4%、16.4%和16.0%.污染天的NOR(氮转化率)(0.35)和SOR(硫转化率)(0.43)明显高于清洁天的NOR(0.25)和SOR(0.18),表明污染天NO2和SO2二次转化程度更高.SOR和NOR随相对湿度的增加而增加,表明相对湿度较高时有利于NO2和SO2的二次转化.污染天和清洁天ρ(SOC)(SOC为二次有机碳)估算值分别为19.79和3.51 μg/m3,分别占ρ(OC)的79.4%和54.9%,占ρ(PM2.5)的9.8%和10.4%,表明焦作市SOC对OC有较大的贡献.PSCF(潜在源贡献因子法)结果表明,本地源是影响焦作市秋、冬两季PM2.5的主要潜在源,太行山南麓区域输送也对其有一定贡献.研究显示,焦作市大气污染较严重,本地一次排放、二次转化和区域输送是焦作市PM2.5的主要来源.   相似文献   

14.
为了明确泰山顶PM2.5及其二次组分的输送路径与潜在来源,基于后向轨迹聚类方法对2015年冬季和春季抵达泰山顶的气团传输轨迹进行聚类分析,并利用PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)方法分析泰山顶冬季和春季PM2.5、SO42-、NO3-和NH4+的潜在源域.结果表明,冬季和春季来自不同方向的气团轨迹对泰山顶PM2.5及其组分的潜在源分布的影响具有明显差异.冬季泰山顶ρ(PM2.5)和ρ(NO3-)平均值的最高值对应的气团轨迹来自湖北、河南、山东济宁等地区,而来自西北方向的轨迹1和轨迹2分别对应的ρ(SO42-)和ρ(NH4+)平均值最高;春季影响ρ(PM2.5)和ρ(NO3-)的气团轨迹主要来自西南方向的河南、安徽北部、山东聊城等地区,而源自蒙古国途经内蒙古、山西、河南北部和山东聊城的气团轨迹对ρ(SO42-)和ρ(NH4+)的贡献最大.泰山顶ρ(PM2.5)、ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的PSCF分布特征与CWT分布特征类似,WPSCF(源区分布概率)和CWT的最高计算值主要集中山东济宁、聊城以及邻近的山西省、河北省和河南省,是泰山顶大气污染物的主要潜在源域.   相似文献   

15.
近年来银川市冬季重污染过程频发,为明确银川市冬季PM2.5重污染的特征,分析其主要来源及成因,于2016年12月-2017年1月在银川市选取3个采样点开展PM2.5的样品采集与化学组分分析,利用CMB(化学质量平衡)模型对银川市冬季PM2.5进行来源解析,对比分析了重污染日与非重污染日污染特征的差异.结果表明:①银川市冬季重污染日ρ(PM2.5)[(181±33.6)μg/m3]是非重污染日的2.1倍;重污染日和非重污染日的ρ(NO3-)/ρ(SO42-)均小于1,表明燃煤仍是银川市冬季PM2.5的重要来源.银川市冬季PM2.5中ρ(SOC)为(14.4±7.34)μg/m3,约占ρ(OC)的65.2%.②与非重污染日相比,重污染日人为源无机元素As、Pb、Cd和Zn质量浓度在ρ(PM2.5)中的占比分别升高33.2%、18.4%、9.8%和2.9%,表明银川市冬季重污染主要受人为源贡献影响.③源解析结果表明,燃煤源、机动车尾气源、二次离子源和扬尘源是银川市PM2.5的主要污染源,与非重污染日相比,重污染日机动车尾气源的贡献率明显降低.研究显示,银川市冬季重污染受人为源污染物排放的影响较大,燃煤源是银川市冬季PM2.5的重要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号