首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

2.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

3.
以A~2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO_3~--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO_3~--N:10、20、30、40、50 mg·L~(-1))下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO_3~--N浓度为30~40 mg·L~(-1)时,NO_3~--N和PO_4~(3-)-P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)~(-1)、1.81~6.08 mg·(g·h)~(-1)(以VSS计)范围内波动,且NO_3~--N/PO_4~(3-)-P比值可间接反映DPAOs生物活性。  相似文献   

4.
针对硝酸盐氮污染地下水,利用含水层介质培养驯化氢自养脱氮菌,借助静态实验,开展氢自养脱氮的室内研究,考察了初始NO_3~--N浓度、C/N、P/N、溶解氧(DO)和腐殖酸(HA)对脱氮能力的影响。结果表明,当初始NO_3~--N浓度为11mg·L~(-1)时,反应7 d后去除率为97.0%;当初始值分别为22和44 mg·L~(-1)时,13 d后去除率为97.9%和60.7%。在C/N≤2∶1时,生成的NO_2~--N峰值达3.45 mg·L~(-1)。当C/N=15∶1~20∶1时,去除率增加至97.1%~97.8%,NO_2~--N为0.12~0.35 mg·L~(-1)。当P/N由0.03∶1增加至0.29∶1时,去除率由76.5%上升至98.1%。当DO≤1.98 mg·L~(-1)时,去除率为93.7%~96.8%;当DO≥3.87 mg·L~(-1)时,去除率降低至84.1%~88.5%。当HA由0.05 mg·L~(-1)增加至38.75 mg·L~(-1)时,去除率为96.8%~98.1%,同时与初始HA相比残留HA呈降低趋势。初始NO_3~--N浓度、C/N、P/N和DO显著影响氢自养脱氮性能。HA抑制自养脱氮性能,且HA存在时部分NO_3~--N被异养脱氮去除。  相似文献   

5.
以去除海水循环水养殖系统中硝酸盐(NO_3~--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO_3~--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO_3~--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO_3~--N在整个过程中可被高效去除;NO_2~--N积累最大值随初始NO_3~--N浓度的增大而增大,且初始NO_3~--N浓度越高,NO_2~--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO_3~--N、NO_2~--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO_3~--N积累问题提供了新的思路。  相似文献   

6.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH_4~+-N为30~40 mg·L~(-1)、NO_2~--N为45~55 mg·L~(-1)、CH_3COONa为60~80 mg·L~(-1),NH_4~+-N、NO_2~--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)~(-1)。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)~(-1)。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

7.
为解决屠宰废水的高氨氮问题,在2 L SBBR中添加Fe~(3+)对模拟屠宰废水进行脱氮处理。在室温条件下,研究了不同浓度Fe~(3+)对NH_4~+-N、N O_2~--N、NO_3~--N、COD、同步硝化反硝化速率(ESND)、微生物群落分布的影响。结果表明,曝气量为0.6 L·min~(-1),HRT为12 h,Fe~(3+)质量浓度为10 mg·L~(-1)时,NH_4~+-N、COD和TN去除率分别为94%、97%和89.28%。N O_3~--N含量小于5 mg·L~(-1),NO2~--N含量接近0 mg·L~(-1),ESND平均值可达93.91%,比对照组高5.24%。Fe~(3+)提高了微生物抗低温冲击性,加快了同步硝化反硝化速率。高浓度的Fe~(3+)(30~50 mg·L~(-1))会产生生物毒性,抑制生物脱氮。SEM及显微镜观察发现,含有10 mg·L~(-1) Fe~(3+)的体系减少了生物质流失,微生物种类丰富,体系脱氮性能得到有效提升。  相似文献   

8.
UASB-SBR工艺处理规模化畜禽养殖废水   总被引:1,自引:0,他引:1  
针对规模化畜禽养殖废水常规厌氧-好氧组合处理工艺及SBR处理工艺脱氮效率低、运行费用高等问题,采用UASB-SBR工艺,研究3种不同的SBR模式对处理效果的影响。结果表明,UASB容积负荷(以COD计)8 kg·(m~3·d)-1、pH 7.0、温度35℃、HRT 25 h时,COD去除率为80%~85%;SBR在进水15 min、反应480 min、沉淀60 min、出水15 min、闲置810 min条件下,对废水COD、NH_4~+-N、和TN去除率分别为91.8%、98.7%和71.6%,出水COD≤180 mg·L~(-1)、NH_4~+-N15 mg·L~(-1)、TN50 mg·L~(-1),达到《畜禽养殖业污染物排放标准》(GB 18596-2001)。该运行条件下NO_2~--N积累率超过50%,出现了NO_2~--N积累,短程硝化反硝化是主要脱氮方式。  相似文献   

9.
有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响   总被引:1,自引:0,他引:1  
养殖沉积物中反硝化作用对于缓解氮污染有重要的作用,沉积物中的反硝化和厌氧氨氧化菌可将化合态氮转变为氮气,从而有效降低污染,有机碳在该过程中有着重要的作用。为了解有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响,采取理化分析和分子生物学分析等方法,以养殖池塘沉积物为基质、人工配水为营养液,添加不同浓度的淀粉,分析120 h内底物亚硝氮(NO_2~--N)、硝氮(NO_3~--N)、氨氮(NH_4~+-N)和TOC浓度,并对反硝化、厌氧氨氧化菌群丰度变化和反硝化菌多样性进行分析。结果表明:淀粉浓度在150 mg·L~(-1)时,NO_2~--N和NO_3~--N的去除率最高,分别达到98.90%和99.86%;NH_4~+-N去除率在淀粉浓度为50 mg·L~(-1)时最高,为35.98%。随着淀粉浓度的增加,反硝化菌的丰度明显增加,但有机碳对厌氧氨氧化菌群具有抑制作用。当淀粉浓度为150 mg·L~(-1)时,反硝化菌的丰度最大、多样性水平最高、物种数目最大,反硝化细菌优势菌属为未分类的变形菌属和β-变形菌属。  相似文献   

10.
垃圾渗滤液中含有大量易被微生物利用的挥发性脂肪酸,若其可以作为城镇污水处理厂的补充碳源,将对降低碳源投加成本和实现垃圾渗滤液的资源化利用有重要意义。在实际城镇污水处理厂考察了垃圾渗滤液补充进水碳源的脱氮效果,并进一步对比了传统碳源(甲醇、乙酸钠)、垃圾渗滤液及垃圾渗滤液在不同pH条件下产生的水解酸化液作为碳源时的反硝化效果。结果表明,实际城镇污水处理厂投加乙酸钠作为补充碳源时总氮去除率仅提高3%左右,而在进水中混合垃圾渗滤液后提高了约10%。垃圾渗滤液与乙酸钠作碳源时NO_3~--N去除率均97%,但垃圾渗滤液为碳源时最大比反硝化速率高达8.8 mg·(g·h)~(-1)(以MLSS计),是乙酸钠为碳源时的1.7倍;垃圾渗滤液中性和碱性水解酸化液为碳源时,反硝化效果相差不大,最大比反硝化速率为4.5~4.8 mg·(g·h)~(-1)(以MLSS计),NO_3~--N去除率仅为70%左右。垃圾渗滤液或其水解酸化液是否可以作为强化脱氮效果的补充碳源取决于基质本身的性质。  相似文献   

11.
针对城市污水处理厂污泥厌氧消化液回流而引起城市污水处理厂处理系统内氨氮累积的问题,采用多级潮汐流人工湿地(MTF-CWs),研究MTF-CWs对污泥厌氧消化液中氨氮和有机物的去除特征及其主要去除途径。经过260 d的运行,结果表明,NH_4~+-N和COD平均进水浓度分别为859.55 mg·L~(-1)和446.52 mg·L~(-1),MTF-CWs对NH_4~+-N和COD均有较好的处理效果,平均去除率分别为66.50%和47.10%。在MTF-CWs中,转化为NO_2~--N和NO_3~--N占被去除NH_4~+-N的73.21%,硝化反应是NH_4~+-N去除的主要途径,MTF-CWs的平均硝化速率为0.3 kg·(m~3·d)~(-1)。TN的平均去除率为17.63%,去除效果较差,其原因在于原水中缺少反硝化所需要的碳源。  相似文献   

12.
针对污水处理厂二级出水深度脱氮的需求,设计了以木屑与硫磺颗粒为填料(质量比1:1)的反硝化生物滤池,对碳氮比失衡的污水处理厂二级出水进行深度脱氮处理。结果表明,木屑释放碳源速率在10 d之后趋于稳定,COD中(40.6±10.0)%是反硝化菌可直接利用的VFA。反硝化生物滤池运行的最佳HRT为10 h,在此条件下,进水硝酸盐(以N计)浓度为30 mg·L~(-1)时,出水硝酸盐浓度最低为11.5 mg·L~(-1),亚硝酸盐(以N计)浓度最低为1.4 mg·L~(-1),反硝化生物滤池内未发生硝酸盐异化还原(DNRA)作用,出水无氨氮积累。出水SO42-浓度最高为73.8 mg·L~(-1)。反硝化生物滤池运行稳定后,出水中COD未超过30 mg·L~(-1),木屑释放的碳源与异养反硝化过程消耗的碳源持平,经反硝化生物滤池深度处理的出水中无过量残留有机物。出水pH稳定在6.9~7.4范围内,反硝化生物滤池无需外加碱类物质。  相似文献   

13.
构建了3室榨菜生产废水微生物脱盐燃料电池系统(microbial desalination cell,MDC),探讨了其阳极COD对榨菜废水MDC产电、脱盐的影响;通过微生物群落分析,探查了脱盐室NH_4~+-N的去除途径。结果表明:在产电性能方面,MDC阳极COD为900 mg·L~(-1)时较400 mg·L~(-1)与1 400 mg·L~(-1)时更优,在1 000Ω的外电阻负载下,其输出电压、最大功率密度、库仑效率分别为550 mV、2.91 W·m~(-3)、(15.7±0.5)%;在脱盐方面,阳极COD为400 mg·L~(-1)时,较其他2种情况更优,MDC的脱盐时间、脱盐速率、电子利用效率分别为910.5 h、5.15 mg·h~(-1)、111%。阳极COD不同的MDC脱盐室,其NH_4~+-N的去除途径基本相同。脱盐室部分NH_4~+-N转化为NO_3~--N后,通过自身的反硝化或以NO_3形式迁移至阳极得以去除,剩余的大部分NH_4~+N以NH_4~+形式迁移至阴极,在碱性环境下转化为NH_3并排出。高通量测序分析结果表明,水解发酵菌属(总丰度为33.21%)为MDC阳极的核心微生物群落。阳极生物膜中的电化学活性菌(总丰度为11.78%)可实现电池的产电功能,反硝化菌属(总丰度为14.61%)的存在证明,脱盐室盐室NO_3~--N迁移至阳极室后进行了反硝化并得以去除。在脱盐室水体中检测到了氨氧化菌属(总丰度为6.93%)及反硝化菌属(总丰度为15.82%),这也是脱盐室中NO_3~--N快速产生和随后浓度陡降的原因。  相似文献   

14.
碳氮比对低温投加介体生物反硝化脱氮的影响   总被引:1,自引:0,他引:1  
污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400mg·L~(-1) (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L~(-1) (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L~(-1) (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。  相似文献   

15.
研究发现嗜热螯台球菌(Chelatococcus daeguensis)TAD1具有同步硝化反硝化性能,可将水中的氨氮去除。重点考察50℃下,碳氮比、碳源、初始pH值、DO浓度等因素对菌株TAD1同步硝化反硝化脱氮性能的影响规律及菌株TAD1的耐氨能力,最后用Minitab软件进行综合优化。结果表明,菌株TAD1在高浓度氨氮(500~3 000 mg/L)下仍具有很高的脱氮能力,pH值和碳源用量是影响TAD1同步硝化反硝化最显著的因素,综合优化后总氮最大去除率达到了70%,证实利用菌株TAD1的同步硝化反硝化性能具有潜在的废水脱氮应用前景。  相似文献   

16.
采用连续进水(feed-batch)方式的SBR在高氨氮负荷(1 kg·(m~3·d)~(-1))和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明在温度(35±1)℃,进水氨氮浓度为1000mg·L~(-1)的条件下对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16mg·(g·h)(以MLVSS计)降到0.3 mg·(g·h)~(-1)(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO_2~--N平均浓度为466.45 mg·L~(-1),NO_2~--N/NH_4~+-N接近1,NO_3~--N浓度低于20 mg·L~(-1),満足厌氧氨氧化(ANAMM0X)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。  相似文献   

17.
从广州市某污水处理厂缺氧段活性污泥中分离筛选出一株反硝化菌,以该菌株为研究对象,鉴定后对该菌株进行脱氮条件最优化实验在此基础上,分析其厌氧氨氧化能力。结果表明:在柠檬酸钠浓度为9 g·L~(-1),KNO_3浓度为1 g·L~(-1),溫度为35℃,pH为6.8的条件下,同时控制接种量为2.5%,即控制初始菌株浓度为10~7 mL~(-1)时,2 d后8号菌能达到87%的最佳NO_3~--N去除率;在厌氧氨氧化能力检测实验中,培养液中生化反应以反硝化作用为主,在第3·5天发现厌氧氨氧化反应,因此推测这株菌具有厌氧氨氧化反应能力。经初步鉴定,该菌株为苏云金芽孢杆菌(Bacillus thuringiensis)。  相似文献   

18.
通过调控进水NO_2~--N浓度分别为0、25、50和100 mg·L~(-1),研究不同初始NO_2~--N浓度对CANON工艺脱氮效果和N_2O释放的影响。结果表明:SBBR中,初始NO_2~--N浓度分别为0、25、50和100 mg·L~(-1)时,TN去除率分别达到81.65%、89.09%,87.75%和88.39%;对应的N_2O释放率分别为7.03%、7.93%、10.21%和11.94%;前1/2周期内N_2O释放量分别占总释放量的46%、53%、68%和75%。通过分析可知,较高初始NO_2~--N浓度,可以增加TN去除率,但是会刺激CANON工艺中N_2O释放量的增加。  相似文献   

19.
以驯化好的反硝化除磷污泥为研究对象,通过批式实验考察了NO_2~--N和NaCl浓度对反硝化除磷率及N_2O释放的影响。当进水亚硝酸盐的浓度由15 mg·L~(-1)升高至25和40 mg·L~(-1)时,除磷率由68.81%±0.5%降至66.25%±1%和62.88%±0.8%,TN的去除率由90.6%±0.7%降至74.55%±1.5%和51.65%±2%,N_2O释放量分别为4.82、13.83和17.06 mg。当NaCl质量分数为0%、0.5%、1%和2%时,TN的去除率由74.55%±1%降至68%±2%、64.2%±1%和54.3%±2.5%,除磷率由66.37%±1.5%降至61.29%±1%、50.47%±2%和36.7%±0.5%,N_2O-N转化率为41.1%±2%、41.4%±2.5%、48.94%±0.6%和51.03%±2%。因此,NO_2~--N和NaCl质量分数的升高均会降低脱氮除磷效率,但增加了N_2O释放量;兼顾脱氮除磷效率前提下,NO_2~--N为25 mg·L~(-1)、NaCl质量分数为1%是N_2O释放量增加的优化条件。  相似文献   

20.
王巧茹  史旋  宋伟  张小磊  李继 《环境工程学报》2019,13(11):2593-2600
为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L~(-1)。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L~(-1)碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L~(-1)和23.96 mg·L~(-1)投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号