首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以深圳为例,通过收集其2014年9月至2017年8月的地面气象观测数据、大气污染物PM_(2.5)和PM_(10)浓度数据及空气质量指数(AQI),利用SPSS软件分别构建线性回归模型与非线性多层神经网络(MLP)模型,探讨了气象因素对PM_(10)、PM_(2.5)及AQI影响的季节性差异,并利用构建的两种模型对PM_(2.5)、PM_(10)和AQI进行预测和对比。结果表明,气温、湿度、风速及风向均对深圳PM_(2.5)、PM_(10)及AQI有较大影响,且影响因素存在季节差异性;两种模型中,MLP模型在对复杂多变的空气质量预测上更具优越性。研究结果可为深圳空气质量优化以及城市局部和整体规划提供科学依据,并为其他城市空气质量模拟分析提供参考。  相似文献   

2.
为了解贵阳市冬季大气污染现状,以贵阳市污染相对严重的白云区为研究对象,连续采集PM_(2.5)、PM_(10)浓度数据,利用普通克里金法进行空间插值获取PM_(2.5)、PM_(10)分布特征。通过留一法交叉验证,比较6种半变异函数模型(三角函数、高斯函数、球面函数、指数函数、J-Bessel函数和K-Bessel函数)的空间插值精度,选出最适的函数模型;采用分区统计和格网统计的方法,对不同土地利用类型、植被覆盖度下的PM_(2.5)、PM_(10)平均浓度进行比较分析。结果表明,三角函数是PM_(2.5)空间插值的最适模型,指数函数是PM_(10)空间插值的最适模型;贵阳市白云区冬季大气PM_(2.5)、PM_(10)浓度总体表现出城区浓度高,郊区浓度低的分布特征;土地利用类型和植被覆盖度对PM_(2.5)和PM_(10)浓度有着较强的影响。  相似文献   

3.
PM2.5是表征空气质量最为重要的指标之一。近年来随着卫星遥感技术的迅速发展,通过气溶胶光学厚度(AOD)间接反演PM2.5已成为监测PM2.5的重要技术手段。从遥感反演PM2.5基本原理、遥感数据源、PM2.5时空分布计算方法以及发展趋势4个方面对PM2.5遥感反演技术的研究进展进行了综述。  相似文献   

4.
以燃烟为室内污染源,对不同污染程度下室内PM_(2.5)浓度进行动态监测,得到PM_(2.5)的沉降规律。研究发现,污染源对室内PM_(2.5)浓度及沉降时间有显著影响,随着燃烟量的增加,室内PM_(2.5)浓度相应升高,恢复到PM_(2.5)初始值所需的沉降时间越长。在质量平衡模型的基础上,建立了封闭条件下室内颗粒物的沉降模型。经验证,PM_(2.5)沉降曲线的变化规律与颗粒物沉降模型一致,说明构建的沉降模型合理可靠。最后,给出了自然通风对控制室内PM_(2.5)污染的效果,为室内PM_(2.5)污染控制提供参考。  相似文献   

5.
为了解无风天情况下PM_(2.5)、PM_(10)的人体暴露水平及扩散机制,对人体呼吸高度的PM_(2.5)、PM_(10)浓度及近地面不同高度处的温度、相对湿度进行连续监测,分析了垂直温度梯度、相对湿度的相对变化速率对PM_(2.5)、PM_(10)浓度的影响,并利用回归分析法建立PM_(2.5)、PM_(10)浓度与不同高度处温度、相对湿度的单、多变量回归模型,从中选取最优回归模型。结果表明:(1)晴天的PM_(2.5)、PM_(10)浓度在研究时段(9:00—21:00)内总体呈先降低再升高的趋势,而阴天、小雨天PM_(2.5)、PM_(10)浓度呈多峰变化,起伏较大;晴天不同高度的温度差异大,阴天、小雨天温度差异相对较小;晴天不同高度的相对湿度曲线总体均呈U型分布,相较而言,阴天及小雨天各层的相对湿度曲线波动较大;(2)垂直温度梯度是影响晴天PM_(2.5)、PM_(10)扩散的主要原因,相对湿度变化是影响颗粒物扩散的另一重要因素。(3)PM_(2.5)、PM_(10)浓度的单、多变量最优回归模型表明,低污染晴天,温度是影响颗粒物扩散的主要因素,高污染晴天则主要受相对湿度的影响,介于上述两种污染状况之间时,PM_(2.5)、PM_(10)浓度不仅受各层相对湿度的控制,还受到温度的影响。阴天PM_(2.5)、PM_(10)浓度的最优回归模型相对复杂,模型精度不及晴天。  相似文献   

6.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

7.
利用质量平衡方程建立了一次回风定风量系统室内PM_(2.5)浓度模型,并对新风PM_(2.5)浓度、新风量、室内污染源、过滤器效率、过滤器安装位置等因素对室内PM_(2.5)浓度的影响进行了模拟分析。模拟结果表明:新风PM_(2.5)浓度和室内污染源强度的变化对室内PM_(2.5)浓度均有较大影响;新风量越大,室内PM_(2.5)浓度受新风PM_(2.5)浓度变化的影响越大;将过滤器分别安装在送风段、新风段和回风段新风比为0.1时,过滤器安装在送风段效果最好,安装在新风段最差,新风比为0.8时,过滤器安装在送风段效果最好,安装在回风段最差;过滤器安装在送风段时,过滤器效率越高,室内PM_(2.5)浓度越低,波动越小。  相似文献   

8.
为研究严寒地区供暖季室内外PM_(2.5)浓度的垂直分布,在供暖季分别对长春某高层居住建筑1、8、15、24、33楼层的室内外PM_(2.5)浓度进行监测,研究不同楼层室内外PM_(2.5)的浓度与变化特征。采用随机组分重叠模型(RCS)方法研究各楼层PM_(2.5)渗透因子,采用逐步回归分析方法研究室内PM_(2.5)浓度的各影响因素。结果表明:在供暖季,长春市高层建筑的不同楼层均存在一定的PM_(2.5)污染,室内外PM_(2.5)浓度随楼层升高大体呈现减小的趋势,但差异不显著。室内外PM_(2.5)浓度存在显著的相关性(P 0.05),在没有室内污染源时,室外颗粒物渗透是室内污染的主要来源。室内PM_(2.5)浓度与房间面积等没有显著相关性。  相似文献   

9.
PM_(2.5)以其对环境空气质量及人类健康的巨大威胁而逐渐引起了专家学者的关注。以西南地区典型山地城市——重庆市主城区为研究区,利用多元线性回归方法和地理信息系统(GIS)技术,基于2013—2017年冬季(1、2、12月)原重庆市环境保护局发布的17个空气环境监测站点实测数据,同时考虑自然及社会经济因素,构建了基于多因素的多元回归模型,模拟了重庆市主城区2013—2017年冬季PM_(2.5)平均浓度的空间分布状况。结果表明:PM_(2.5)浓度受多因素的影响,其中缓冲半径1 500m内建设用地面积、1 000m内林地面积、2 500m内产业点密度、1 500m内道路长度及高程影响较大;通过多因素与PM_(2.5)浓度的相关性建立的回归模型,能有效模拟PM_(2.5)浓度的空间分布特点,重庆市主城区冬季PM_(2.5)平均浓度的空间分布呈现中西部高、北部和东南部较低的格局;2013—2017年冬季PM_(2.5)平均浓度有下降的趋势,2015年冬季下降幅度尤为明显。此研究结果对探讨PM_(2.5)浓度的空间分布特点有一定的应用价值,可为减轻空气PM_(2.5)污染及提高城市空气质量提供重要的科学依据。  相似文献   

10.
基于2014—2016年广州PM_(2.5)浓度逐时观测数据,研究了广州PM_(2.5)污染变化特征及其与气象因子的关系,确定了影响广州大气能见度的PM_(2.5)浓度阈值。结果表明:(1)2014—2016年广州PM_(2.5)质量浓度平均为32.7μg/m3,广州1月PM_(2.5)污染最重,轻度、中度、重度污染频率合计达20.16%;(2)PM_(2.5)浓度与风速、降水、气温、能见度呈负相关,与相对湿度、气压呈正相关;(3)广州地区在南风的条件下PM_(2.5)浓度最低,风速小于2m/s的偏北风下易出现污染;(4)PM_(2.5)浓度与相对湿度共同影响广州能见度的变化,随着相对湿度的增加,PM_(2.5)浓度的敏感阈值不断减小,通常当PM_(2.5)高于37.3μg/m3时,控制PM_(2.5)对改善城市能见度成效相对缓慢,而当PM_(2.5)浓度低于此阈值时,降低PM_(2.5)将显著提高大气能见度。  相似文献   

11.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

12.
机动车行驶过程中车轮转动引起的道路交通扬尘对城市颗粒物具有较大影响。利用DustTrak 8530型颗粒物检测仪结合全球定位系统(GPS),研究了机动车车速对道路交通扬尘排放特征的影响。结果表明:随着车速的加快,由机动车车轮转动引起的PM_(10)、PM_(2.5)浓度以及PM_(2.5)/PM_(10)(质量浓度比,下同)逐渐增大;通过对数据进行拟合,分别得出PM_(10)、PM_(2.5)浓度及PM_(2.5)/PM_(10)与机动车车速之间的函数关系。研究结果为准确构建道路交通扬尘排放清单以及测试道路交通扬尘排放因子和排放量奠定了实验基础。  相似文献   

13.
利用珠江三角洲(简称珠三角)58个监测点位2013—2015年的CO、SO_2、NO_2、O_3、PM_(10)、PM_(2.5)浓度数据,对珠三角PM_(2.5)高污染天气的污染物分布特征进行研究,以期更深入地揭示珠三角PM_(2.5)的污染特征。结果表明:珠三角PM_(2.5)高污染天气主要发生在秋季(10月)和冬季(1月、12月);相对于冬季,秋季珠三角大气污染光化学反应更活跃;秋季珠三角PM_(2.5)高污染天气由一次污染和二次污染同步加强导致,污染防治难度大;冬季珠三角大气污染体现了高污染区域传输影响的特征,PM_(2.5)污染由高污染区域传输背景下的本地污染积累加强导致,佛山和广州一带尤为明显,是重点防治地区。  相似文献   

14.
近年来雾霾天气在中国大面积频发,PM_(2.5)已经成为中国大气颗粒物污染的首要污染物。对中国近年来PM_(2.5)的研究进展进行总结,分析了城市大气及室内环境中PM_(2.5)的来源,阐述了PM_(2.5)对大气能见度、人体健康及人们行为方式的影响,介绍了室内外关于PM_(2.5)的相关性指标以及PM_(2.5)控制的最新技术等,最后对相关研究前景进行分析并提出建议。  相似文献   

15.
基于山西省11个地级市2015年7月至2016年5月的PM_(2.5)月均浓度数据,运用地理信息系统(GIS)和分级统计法分析了山西省PM_(2.5)的时空变化特征。结果表明:山西省PM_(2.5)月平均浓度变化具有季节性,2015年8—9月和2016年4—5月污染较轻,2015年12月至2016年1月污染较严重;晋南各城市污染均比较严重,而位于晋北的大同市和晋西的吕梁市PM_(2.5)月均浓度一直处于达标状态。主成分分析发现,除吕梁市外,其他地级市对山西省PM_(2.5)污染的贡献接近,表明不同地级市的PM_(2.5)月均浓度变化主要受大尺度的天气变化影响。研究结果有利于了解山西省PM_(2.5)污染的时空分布格局,进而有助于针对性地开展污染防控工作。  相似文献   

16.
为了探讨京津冀地区AOD和PM_(2.5)的变化特征及其相关性对NASA MODIS气溶胶光学厚度产品与京津冀地区PM_(2.5)质量浓度进行了比较分析。结果表明,AOD和PM_(2.5)均有明显的时间和空间分布特征且二者变化特征一致:张家口、承德、秦皇岛是观测期间2014年11月—2015年3月污染最轻的3个城市;京津冀南部AOD值和PM_(2.5)质量浓度明显高于北部。通过各市AOD和PM_(2.5)质量浓度的相关性分析,其最优模型均是非线性模型。根据各市最优模型得到的决定系数,邢台市、衡水市和石家庄市AOD和PM_(2.5)质量浓度具有比较好的相关性,北京市和天津市的相关性相对较差。  相似文献   

17.
PM_(2.5)污染已成为当前经济发展中亟待解决的难题。从年、季、日变化及周末效应4个时间尺度和空间自相关分析研究了京津冀地区PM_(2.5)的时空效应,并构建空间回归模型量化分析相关社会经济因素对PM_(2.5)的影响。结果显示:(1)2013—2016年京津冀地区PM_(2.5)污染整体呈下降趋势,但污染程度依然很高,基本都没有达到《环境空气质量标准》(GB 3095—2012)二级标准(35μg/m~3)。四季的达标天数夏季春季秋季冬季。中南部的石家庄、保定、衡水、邢台、邯郸为PM_(2.5)浓度高值区,日变化曲线为单峰型,受工业企业生产排放的影响较大;北部的张家口、承德、秦皇岛为PM_(2.5)浓度低值区,中东部的天津、北京、沧州、唐山、廊坊为PM_(2.5)浓度中值区,日变化曲线均为双峰型,受机动车尾气排放的影响较大。石家庄、北京的周末效应表现为白天PM_(2.5)浓度工作日高于周末,晚上周末高于工作日。(2)京津冀地区PM_(2.5)存在显著的空间正相关性,2013—2016年石家庄、衡水、邢台、邯郸始终表现出高-高集聚特征,张家口、承德、秦皇岛始终保持低-低集聚特征。汽车尾气排放是京津冀地区PM_(2.5)污染的重要影响因素,而能源消耗的影响不显著。  相似文献   

18.
基于浓度守恒原理建立了一次回风空调系统室内PM_(2.5)浓度模型,研究了过滤器分别安装在新风段、回风段和送风段时过滤效率和新风量的变化对室内PM_(2.5)浓度的影响。模拟结果表明:在室外PM_(2.5)浓度大于室内初始值的条件下,过滤器安装在送风段或回风段时,减少新风有利于室内PM_(2.5)污染控制,过滤器安装在新风段时,根据过滤器效率调节新风,过滤效率小于临界效率,减小新风有利于室内污染控制;在室外PM_(2.5)浓度小于室内初始值的条件下,过滤器安装在送风段或新风段时,增加新风有利于室内PM_(2.5)污染控制,过滤器安装在回风段时,也存在临界效率,过滤效率小于临界值,增加新风有利于室内PM_(2.5)污染控制。  相似文献   

19.
为探究人为因素和气象因素对道路区域PM_(2.5)浓度的影响,选择南京仙林大学城某条典型道路开展大气PM_(2.5)监测实验。结果表明,道路清扫抬升PM_(2.5)浓度,白天的抬升作用较傍晚和夜间更加显著。各类交通流对道路区域PM_(2.5)浓度的影响程度排序为:柴油车汽油车燃气车道路行人。PM_(2.5)浓度阴天高于晴天和多云天,霾日(209.3、80.5μg/m~3)高于非霾日(47.0、62.0μg/m~3);在霾日变化特征各异,在非霾日均呈"三峰"分布特征。非霾日,道路区域PM_(2.5)浓度的高值区与相对湿度的高值区,温度、风速的低值区重合;PM_(2.5)浓度的低值区与相对湿度的低值区,温度、风速的高值区重合。温度与PM_(2.5)浓度呈负相关(r=-0.501,P0.05),是影响PM_(2.5)污染程度的关键气象因子。由此可见,道路清扫、交通流和各类气象因素对道路区域PM_(2.5)浓度影响显著。  相似文献   

20.
为了解北京城区夏季大气颗粒物PM_(2.5)及其不同组分的化学、生物污染特征,于2014年5月末连续采样一个月,采样后超声洗脱并冷冻干燥得到PM_(2.5)颗粒物,在PM_(2.5)颗粒物的基础上制备PM_(2.5)水溶性组分和PM_(2.5)单纯颗粒物,进而对PM_(2.5)颗粒物及另外两种组分样品中的化学及生物成分进行分析测定。结果表明,8种水溶性离子总质量占PM_(2.5)各样品的质量分数依次为67.71%,33.37%,0.09%(依次为PM_(2.5)水溶性组分、PM_(2.5)颗粒物、PM_(2.5)单纯颗粒物,下述数据也按此顺序描述);16种"酸提"元素总质量占PM_(2.5)各样品的质量分数依次为4.84%,1.86%,0.78%;各样品中内毒素含量分别为0.054 7 EU·mg-1,0.433 3 EU·mg-1,0.041 9 EU·mg-1;PM_(2.5)颗粒物可以检测到细菌16S r DNA、真菌18S r DNA,拷贝量分别为(2.6±1.0)×108个·g-1、(4.3±0.9)×108个·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号