首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
以石家庄城市道路扬尘为研究对象,于2014~2015年秋冬季采用移动式采样法收集不同类型道路积尘。分析道路积尘负荷、道路积尘粒径分布特征、车流量和平均车重等数据,计算得出石家庄道路扬尘PM_(2.5)排放因子和排放量。通过地理信息系统软件(GIS)提取研究区域道路信息,制作道路矢量化图,并结合道路扬尘PM_(2.5)排放因子和排放量,建立排放清单。结果表明,秋季各道路扬尘PM_(2.5)排放因子为0.003~0.103 g·VKT~(-1),冬季各道路扬尘PM_(2.5)排放因子为0.004~0.016 g·VKT~(-1);秋、冬两季不同类型道路扬尘PM_(2.5)排放因子分布特征为快速路主干道次干道支路;秋季道路扬尘PM_(2.5)排放量为6.47~53.07 t,冬季为3.47~12.02 t,秋季排放量大于冬季排放量,秋、冬两季道路扬尘PM_(2.5)排放量分布特征为快速路支路主干道次干道。  相似文献   

2.
利用快速检测法(TRAKER)实时监测石家庄夏季铺装道路机动车道PM_(2.5)、PM_(10)的背景浓度和在机动车行驶过程中车轮扬起的PM_(2.5)、PM_(10)浓度,分析车速对PM_(2.5)、PM_(10)排放特征的影响,并得到不同类型道路积尘负荷、排放因子和排放强度。结果表明:车轮扬起的PM_(2.5)浓度随车速变化不大,而PM_(10)起伏较大;车速相同时,快速路、主干道、次干道、支路的PM_(2.5)质量浓度分别为0.046、0.110、0.160、0.097mg/m~3,表现为次干道主干道支路快速路,与积尘负荷的强弱顺序一致;不同类型道路排放因子表现为次干道快速路支路主干道,排放强度表现为快速路次干道主干道支路。研究结果可为石家庄道路交通扬尘排放清单的构建以及扬尘的治理提供数据支撑和参考。  相似文献   

3.
对典型道路扬尘进行采样,分析夏季北京市西城区、海淀区、门头沟区不同类型道路积尘负荷和PM_(2.5)粒度乘数(K_(2.5),g/(km·辆)),并对高峰与非高峰期K_(2.5)进行统计分析,通过计算得到了PM_(2.5)、PM_(10)排放因子和排放强度。结果表明:除北营房中街和阜外大街以外的积尘负荷总体表现为支路次干道主干道快速路,门头沟区海淀区西城区。不同道路类型PM_(10)排放因子表现为主干道次干道支路快速路(西城区除外),PM_(10)排放强度表现为快速路主干道次干道支路。K_(2.5)的分析结果表明,K_(2.5)表现为快速路主干道次干道支路,西城区海淀区门头沟区,高峰期K_(2.5)普遍比非高峰期大,其中午高峰最大。此外,北营房中街积尘负荷为0.681g/m~2,PM_(10)排放因子和排放强度分别为1.04g/(km·辆)和8.43kg/(km·d),明显小于其他区支路;阜外大街积尘负荷为0.724g/m~2,PM_(10)排放因子和排放强度分别为1.28g/(km·辆)和44.74kg/(km·d),明显小于其他区主干道;这可能与两条道路的日平均洒水次数较多有关。研究结果可为北京市道路扬尘排放清单的构建提供数据参考。  相似文献   

4.
道路扬尘已成为城市颗粒物重要来源之一。为了甄选有效的采样测试方法,分别采用降尘法和积尘负荷法对北京市4种不同类型的道路扬尘进行采集,通过分析获得降尘量和积尘负荷的时空变化规律。结果显示:降尘量夏季明显高于秋季,在次干道和支路上,采样高度1.5、2.5m的降尘量差异不大,在夏季差值分别为0.193 0、0.122 4g/(m~2·d),在秋季差值分别为0.037 1、0.013 3g/(m~2·d);而主干道和快速路上,1.5 m高度的降尘量明显大于2.5 m高度,在夏季差值分别为0.268 6、0.464 6g/(m~2·d),在秋季差值分别为0.111 0、0.353 9g/(m~2·d);道路积尘负荷夏季高于秋季,在夏季表现为支路次干道主干道快速路,其积尘负荷从大到小依次为2.758 9、1.976 7、1.787 8、1.547 5g/m~2,在秋季表现为次干道支路快速路主干道,其积尘负荷从大到小依次为1.920 2、1.822 9、1.430 6、0.201 5g/m~2。随着车流量增大和车速加快,积尘负荷逐渐降低。研究结果能为北京市在道路扬尘采样方法的选择和颗粒物控制上提供理论依据。  相似文献   

5.
对渭南主城区道路积尘负荷进行了实测,并计算了2018年不同道路类型和不同车型的交通扬尘颗粒物排放量。结果表明:渭南主城区支路积尘负荷最大,为1.79g/m~2,高速积尘负荷最小,为0.05g/m~2,洒水作业能有效降低积尘负荷;渭南主城区道路交通扬尘PM_(2.5)和PM_(10)的年排放量分别为1 149.65、4 751.88t;小型客车引起的交通扬尘颗粒物排放在城市道路(包括主干道、次干道、支路)和国省道(包括国道和省道)上的分担率最高,分别为59.49%、41.46%,重型货车在高速上的分担率最高,为63.35%;城市道路交通扬尘颗粒物排放有明显的双峰日变化规律,而国省道和高速不明显。  相似文献   

6.
2015年7月3—17日,采集天津3条典型道路路边道路交通环境中不同粒径段的PM_(2.5)样品,分析其中的12种金属元素,并开展健康风险评价。结果表明:(1)3种典型道路上PM_(2.5)均超过《环境空气质量标准》(GB 3095—2012)中二级日均限值(75μg/m~3)。主干道、次干道、快速路上PM_(2.5)中金属元素累计质量浓度分别为0.68、0.74、0.67μg/m3。(2)多数金属元素的粒径分布存在明显差异。Zn和Cu为轮胎和刹车片磨损标志物,峰值在较大粒径颗粒物上。Sb通常作为添加剂以Sb2S3的形式加入到刹车片中,峰值出现在0.2~1.0μm粒径段。(3)Cr、Co、Ni、Cu、Zn、As、Cd、Sn、Sb和Pb的富集因子10,受到人为源的作用。对于儿童和成人群体,全部道路路边环境的非致癌风险危险指数均大于1,具有非致癌风险。PM_(2.5)中Cr、Co、Ni、As、Cd的致癌风险基本上均超过美国环境保护署推荐的可接受风险阈值(10-6),具有明显的致癌效应。  相似文献   

7.
2014年秋季在天津市主城区布设88个道路降尘采样点,每个采样点设置2个采样高度,共采集176个样品。利用重量法计算得到降尘负荷,使用SPSS进行统计分析,研究了天津市秋季道路降尘的分布特征。结果表明:(1)1.5m处的降尘负荷中位值高于2.5m处;(2)不同道路类型的降尘负荷为外环线快速路主干道支路次干道;(3)东西走向道路的南北两侧的降尘负荷差异显著,这可能与采样期间的主导风向有关。  相似文献   

8.
采用改进的移动式铺装道路积尘采样方法于夏季采集天津市城区不同类型道路各车道的道路积尘样品,计算出积尘负荷,并分析积尘负荷的变化规律。结果表明:天津市区外环线、快速路、主干道、次干道和支路的路面积尘负荷分别为0.06、0.10、0.21、0.22和0.28 g·m-2,天津市道路路面积尘污染强弱顺序为支路次干道主干道快速路外环线;对于次干道与支路,不同车道路面积尘负荷差异不大;对于外环线(1车道除外)、快速路和主干道,越接近道路中央积尘负荷越小,且4车道(即慢车道)积尘负荷与其他各车道积尘负荷之间存在线性关系。  相似文献   

9.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75μg·m~(-3)),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO_3~-与SO24,而安康大气PM0.1颗粒物中水溶性离子主要以SO_4~(2-)与Ca2+为主,PM2.5颗粒物中水溶性离子以NO_3~-、SO_4~(2-)和NH_4~+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

10.
为掌握室内外细颗粒物(PM_(2.5))污染特性,监测采集西安市某办公场所室内外PM_(2.5)样品,统计分析PM_(2.5)质量浓度特征,探究室内外PM_(2.5)相关性、微观形貌以及矿物组成的差异。结果表明:室内外PM_(2.5)年均质量浓度分别为85.32和109.83μg·m~(-3),冬季污染尤为严重。室内PM_(2.5)受室外PM_(2.5)影响显著,室内外PM_(2.5)质量浓度的相关系数为0.890 0。室内PM_(2.5)多为粒径小于1μm的球状颗粒物,而室外颗粒物形状、大小不规则,室内外PM_(2.5)均含有大量的碳、氧元素,其他元素的种类和含量存在一定差异。室内PM_(2.5)中矿物多为非晶态物质,室外PM_(2.5)主要由石英、赤铁矿和碳酸钙等矿物质组成。  相似文献   

11.
基于MOVES的轻型车颗粒物排放来源和特征分析   总被引:1,自引:0,他引:1  
利用实测数据对MOVES模型进行本地化修正,测算了轻型车颗粒物的排放来源以及粒径、组分构成特征。分析结果表明,全部颗粒物中,轻型汽油车的非尾气排放PM10所占比例为72.70%,PM2.5为42.64%;轻型柴油车非尾气排放PM10所占比例为40.78%,PM2.5为15.41%。2种燃油车辆的尾气排放颗粒物主要来源于尾气管排放,粒径集中在0~2.5μm;而非尾气排放颗粒物主要来源于刹车磨损,粒径集中在2.5~10μm。轻型汽油车的尾气排放颗粒物主要组分为有机碳,轻型柴油车则为元素碳和有机碳。进一步分析不同速度下颗粒物排放变化发现:轻型车非尾气排放颗粒物随行驶速度的增大而降低,而尾气排放颗粒物则随速度的增大先降低后升高;非尾气排放颗粒物占全部颗粒物比例随速度的增大先升高再降低;全部颗粒物中PM2.5的比例则随速度的增大先降低后升高。  相似文献   

12.
为研究西宁市道路扬尘PM2.5和PM10中碳组分的特征及其来源,于2019年5月使用样方法采集西宁市78条铺装道路,通过NK-ZXF再悬浮仪器将样品悬浮到滤膜上,并利用热光碳分析仪测定有机碳(OC)和元素碳(EC)组分。结果表明:PM2.5中ω(TC)为8.49%(环线)~10.38%(支路),ω(OC)为7.68%(环线)~9.36%(支路),ω(EC)为0.74%(国道)~1.02%(支路);PM10中ω(TC)为8.38%(环线)~10.78%(支路),ω(OC)为7.30%(环线)~9.76%(支路),ω(EC)为0.59%(高速)~1.09%(环线)。各类型道路中ω(OC)均明显大于ω(EC),ω(EC)在不同道路类型中差异不大。OC在PM10中的质量分数均高于在PM2.5中的值,表明OC更容易富集到粒径大的颗粒物上。采用最小相关系数法(MRS)估算道路扬尘PM2.5和PM10中SOC含量,得出SOC分...  相似文献   

13.
对EPA推导AP-42模型的源数据划分范围,评估不同积尘负荷范围的线性回归模型的模拟效果。结果显示,在不同积尘负荷范围内(0~0.5、0.5~1、0~1、0~4和5~400 g/m2),线性回归模型参数以及方程R2值均有差异。对182个北京市道路积尘样品进行频数分布分析,发现积尘负荷主要分布在0~0.5 g/m2或0~1 g/m2范围内,分别运用道路积尘负荷0~0.5、0.5~1和0~1 g/m2范围的模拟回归模型,评估北京市铺装道路PM10的排放特征,尽管3个不同模型评估结果的平均值的比例是4∶2∶1,但是3个模型评估不同类型道路PM10排放因子的大小顺序是:支路次干道主干道快速路。  相似文献   

14.
于2014年夏季,通过观测海淀公园不同区域沿道路不同宽度处PM_(2.5)浓度,研究PM_(2.5)浓度日变化规律、水平梯度分布规律、净化效益及其影响因素。结果表明,海淀公园内PM_(2.5)浓度日变化规律呈白天低晚上高的趋势,09:00—15:00时PM_(2.5)浓度达到国家标准Ⅱ类功能区浓度质量要求,05:00时PM_(2.5)浓度最高。不同观测区域一定宽度范围内出现PM_(2.5)浓度积聚,之后开始下降。总体上,海淀公园在13:00时对PM_(2.5)浓度净化效益最显著,09:00时净化效益最差。环城高速路区域与城市主干道区域165 m以上宽度处、城市次干道区域60 m以上宽度处为正净化效益,并维持正净化效益。海淀公园内PM_(2.5)浓度与气象因子之间相关关系表明,PM_(2.5)浓度与平均温度、相对湿度呈显著相关,与其他气象因素没有显著相关性。  相似文献   

15.
北京道路降尘排放特征研究   总被引:12,自引:0,他引:12  
道路扬尘是城市大气颗粒物主要来源之一,本研究采用降尘法监测北京道路扬尘并分析降尘排放特征。对北京不同类型道路共40条,每条道路布置2个降尘监测点,并对背景降尘值进行了监测,道路降尘(DFr)与背景降尘(DFb)的差值作为道路自身降尘(ΔDF)。结果显示,快速路、主干道、次干道和支路的ΔDF分别为18.9、13.9、9.9和9.7 t/(km2.30 d),降尘值比例为100∶74∶52∶51,单辆车引起的降尘比例为1.00∶2.55∶5.20∶5.67;夏季道路降尘量最大,其次为冬季。以一年为周期,道路月均降尘为ΔDF,则1~4月份交通降尘量为0.72~0.94ΔDF,5~8月份降尘量为1.10~1.30ΔDF,9~12月份月降尘量为0.96~0.99ΔDF;不同类型道路ΔDF数据均呈偏态分布,道路降尘不同季节也均为偏态分布。道路降尘量与车流量呈正线性相关。  相似文献   

16.
燃煤工业锅炉PM2.5排放规律   总被引:1,自引:0,他引:1  
当前我国工业锅炉中最主要应用炉型为链条炉,是大气污染物排放的重要污染源之一。本研究利用基于荷电低压捕集器(ELPI)的颗粒物排放稀释系统,选取5台典型链条燃煤工业锅炉,对其除尘器的进口、出口和脱硫后3处进行细微颗粒物(PM2.5)的现场测试。粒径分布结果表明,粒数浓度较多在0.04~0.3μm范围内,质量浓度分布在0.08~0.25μm范围内呈单峰上升形态。除尘装置对PM2.5的捕集效率在50%左右,除尘效果较差;脱硫后有些级的颗粒物浓度不降反升。目前环境日趋恶劣,燃煤工业锅炉作为PM2.5的重要排放源,将是今后重点控制对象。  相似文献   

17.
2011年8月—2012年7月间于东莞市生活区(NC)点和工业区(ZT)点采集大气PM10/PM2.5/PM1样品,并检测分析了颗粒物上的多环芳烃(PAHs)和正构烷烃。粒径分布结果显示,PAHs和正构烷烃均主要富集在PM1上,而正构烷烃富集程度更高。PAHs环数分析结果显示,PM1中主导PAHs为6环,PM1~2.5和PM2.5~10中则为4环。利用特定比值法分析PAHs来源,结果表明,生活区NC点大气颗粒物中PAHs主要来自汽油车尾气、天然气燃烧、燃煤源和烹饪源,而工业区ZT点则主要来自柴油车尾气、燃煤和木材燃烧。通过主峰碳数、碳优势指数、植物蜡贡献率等方法分析正构烷烃来源,结果表明,化石燃料燃烧是东莞市大气颗粒物中正构烷烃的主要贡献源,其次是高等植物蜡排放,贡献率约为10.9%~28.9%。化石燃料燃烧源贡献率对PM1的贡献率明显较PM1~2.5和PM2.5~10高。  相似文献   

18.
为研究杭州市大气PM_(2.5)的污染特征,评估本地污染源和外来污染源对PM_(2.5)的影响,于2013年10月10日至11月2日对杭州市主城区两个不同高度的采样点进行采样,并定量分析大气PM_(2.5)中的化学成分。结果表明,采样期间20、84m高度的大气PM_(2.5)日均质量浓度分别为(80.5±28.9)、(80.3±29.3)μg/m3,不同高度的PM_(2.5)浓度及其化学成分无明显差异;PM_(2.5)主要成分质量分数按如下排序:SO_4~(2-)有机碳(OC)NO_3~-NH_4~+元素碳(EC);大气PM_(2.5)中二次粒子SO_4~(2-)、NO_3~-、NH_4~+平均质量浓度总和约为39.0μg/m3,二次转化是杭州市大气PM_(2.5)的主要来源,SO_4~(2-)、NO_3~-、NH_4~+贡献率为48%左右;20、84 m高度的大气PM_(2.5)中OC分别为(15.6±5.1)、(14.8±4.7)μg/m3,EC分别为(4.6±1.8)、(4.6±1.6)μg/m3,OC/EC(质量比)约为3.3。采样期间,杭州市大气PM_(2.5)在近地面垂直方向上分布较为均匀,表明杭州市大气PM_(2.5)受外来污染源的影响较小。而在本地污染源中,杭州市大气PM_(2.5)主要受到生物质燃烧、机动车尾气、燃煤和餐饮油烟等来源的影响,地面扬尘的作用不明显。  相似文献   

19.
成都市道路细颗粒物污染特征   总被引:1,自引:0,他引:1  
2013年9月20—28日,通过采集成都市城区道路大气环境中的PM2.5样品,分析测定了其中可溶性无机离子、碳组分和金属元素含量。结果表明,PM2.5中Fe、Mn、Ti、Si、Al等主要来源于机动车行驶产生的道路扬尘,Pb、Cu、Ni和Zn等主要来源于机动车尾气及零部件磨损;PM2.5中水溶性无机离子占道路大气环境细颗粒物的33.7%,A/C比值为0.95,表明细颗粒物偏弱碱性;机动车尾气排放的OC1、OC2、OC4和EC1等4种碳组分占道路大气环境细颗粒物碳组分的65.8%,且OC/EC比值为2.9,有二次有机碳(SOC)产生。  相似文献   

20.
分别在采暖期和非采暖期采集了长春市净月区与朝阳区的大气颗粒物,研究其污染特征的差异,并进行了形貌分析。结果表明:(1)净月区采暖期与非采暖期PM_(2.5)平均质量浓度分别为144.86、87.10μg/m~3,PM_(10)平均质量浓度分别为149.07、138.72μg/m~3;朝阳区采暖期与非采暖期PM_(2.5)平均质量浓度分别为234.48、110.01μg/m~3,PM_(10)平均质量浓度分别为275.07、147.50μg/m~3。整体上,非采暖期大气颗粒物浓度低于采暖期。(2)无论是采暖期还是非采暖期,净月区PM_(2.5)与PM_(10)浓度均明显低于朝阳区。(3)净月区采暖期大气颗粒物来源主要是柴油尾气、燃煤源与生物质燃烧;非采暖期,机动车尾气、建筑扬尘、土壤扬尘与某些工业排放对大气颗粒物贡献较大。朝阳区大气颗粒物来源较净月区复杂,这与两个区不同的地理位置和不同功能有直接的联系,建筑扬尘对于朝阳区大气颗粒物的含量有较大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号