首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用新型生物炭与海藻酸钠联合固定化技术对麦草畏降解菌XD-3进行固定化,结果表明海藻酸钠-生物炭联合固定化的小球机械强度、传质性能明显高于海藻酸钠固定化小球;电镜扫描图谱结果发现海藻酸钠-生物碳联合固定化小球更适合麦草畏降解菌的生长和定殖;不同的温度、p H值、Na Cl浓度和重金属离子浓度对固定化菌与游离菌降解效果影响研究表明,生物碳与海藻酸钠联合固定化细菌适应范围广,抗冲击能力更强。在实验室规模的流化床生物反应器(FBBR)中,联合固定化菌可以持续高效降解模拟麦草畏废水,为麦草畏固定化菌的工程化应用奠定了基础。  相似文献   

2.
蒽的高效降解菌的固定化小球的制备及其降解特性   总被引:1,自引:0,他引:1  
旨在利用固定化高效降解菌小球去除水中蒽,充分发挥累托石的吸附和生物降解的协同作用,以累托石、聚乙烯醇(PVA)、海藻酸钠(SA)作为固定化载体材料,硼酸和氯化钙作为交联剂,将蒽的高效降解菌包埋制备固定化微生物小球.考察了累托石用量、PVA投加量、海藻酸钠用量、氯化钙用量、微生物包埋量和交联时间等因素对微生物小球活性的影响,通过正交实验确定了微生物小球的最佳制备条件.结果表明,制备固定化微生物小球的最佳条件为:累托石2.5%,PVA 12%,SA 0.3%,CaCl24%,交联时间28 h,微生物包埋量10%.对40 mgJ/L的蒽溶液,游离微生物在50 h后开始发挥明显的降解作用,经过68 h蒽的去除率达到35.65%;而固定化微生物小球经过9 h即可使蒽的去除率达到81.8%,23 h后葸的去除率可达100%.固定化微生物小球对水中蒽的去除机理与吸附-降解工艺的机理类似,即固定化微生物小球类似于一个一体化的微型反应器,经过迟滞期后,在该反应器内同时发生吸附和降解作用.  相似文献   

3.
以二甘醇/乙二醇醇热法制备了超顺磁性纳米Fe_3O_4,采用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)以及磁滞回线等手段对制备的纳米Fe_3O_4进行表征,并通过纳米Fe_3O_4/H_2O_2类Fenton反应降解罗丹明B废水考察了纳米Fe_3O_4/H_2O_2的性能及其稳定性。研究表明,制备的纳米Fe_3O_4不仅分散性好、规整球状结构,磁性强且粒径比较均匀,平均粒径约为80 nm;从单因素实验(纳米Fe_3O_4投加量、H_2O_2/Fe_3O_4的摩尔比、pH以及反应时间)与正交实验获得了最佳反应条件:纳米Fe_3O_4投加量为2 g·L~(-1),pH=4,H_2O_2/Fe_3O_4摩尔比为4∶1,反应时间为3 h,此时罗丹明B与TOC去除率分别为100%和35%。重复4次使用纳米Fe_3O_4,通过表征发现纳米Fe_3O_4颗粒的晶体结构不变但是发生了团聚,纳米Fe_3O_4的催化性能有所下降。  相似文献   

4.
采用共沉淀法制备了具有较高催化活性的磁性纳米Fe_3O_4,并对其催化活化过硫酸盐(PS)降解磺胺甲恶唑(SMX)的性能进行了探究,考察了PS浓度、Fe_3O_4投加量、初始pH、共存阴离子(Cl~-、CO_3~(2-)、NO_3~-)以及腐殖酸(HA)对SMX降解效果的影响。SEM、EDS、FT-IR、XRD和BET表征结果表明,实验制备了较高纯度的Fe_3O_4纳米颗粒;重复性实验结果表明,Fe_3O_4具有良好的稳定性;催化降解SMX的实验结果表明,提高PS的浓度、增加Fe_3O_4的投加量均可提高SMX的降解率,且SMX的降解反应符合拟一级动力学。当PS浓度为0.5 mmol·L~(-1)、Fe_3O_4投加量为1.2 g·L~(-1)、初始pH=7.0时,Fe_3O_4活化PS降解SMX的效果最佳,在反应180 min后,SMX降解率达到93.3%。XPS光谱分析结果表明,反应过程中Fe~(2+)主要参与了活化PS降解SMX的过程。乙醇(EtOH)和叔丁醇(TBA)自由基淬灭实验结果证明,在Fe_3O_4/PS体系中同时存在SO_4~-·和·OH,SO_4~-·对SMX的降解发挥了主导作用。以上结果为含磺胺甲恶唑废水的处理提供了催化剂选择,也可为过硫酸盐高级氧化体系中阴离子和腐殖酸对反应的影响效果提供参考。  相似文献   

5.
利用聚乙烯醇-海藻酸钠-磁性竹炭复合制备磁性悬浮小球,该小球的磁矫顽力为28.6 mT,具有较强的磁场,可用于磁场引导分离。利用磁性悬浮小球作为载体对机油降解菌FZ5进行固定化,研究了固定化时间、降解时间、固定化小球投加量、初始pH值和初始机油浓度对机油降油率的影响。结果表明,在固定化挂膜3 d,固定化小球投加量为8%,初始pH值为7,初始机油浓度为400 mg/L,降解培养3 d后对机油的降解率可达91.21%。  相似文献   

6.
考察了海藻酸钠(SA)和聚乙烯醇(PVA)含量对固定化载体性能的影响,并筛选了最优条件制备固定化氨氮降解菌,研究其对氨氮废水的处理效果。当PVA和SA质量分数分别为8.00%、1.00%时,制成的固定化载体抗压性能最好,能够形成丰富的多孔结构。固定化氨氮降解菌在处理氨氮废水前驯化168h,可以恢复较高活性。在固定化氨氮降解菌投加量2%(质量分数)、反应温度30℃、pH 8.01、溶解氧3.0 mg/L的条件下反应60h,氨氮废水中的氨氮质量浓度从最初的3 835.29 mg/L降为82.35mg/L,去除率为97.85%。固定化氨氮降解菌在投加量低于氨氮降解菌的情况下,仍然能实现与之相近的氨氮废水处理效果,证明固定化氨氮降解菌能高效处理高浓度氨氮废水。  相似文献   

7.
为研究磁性硅球(Fe_3O_4@SiO_2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR(编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L~(-1)的纳米Fe_3O_4和Fe_3O_4@SiO_2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe_3O_4@SiO_2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe_3O_4@SiO_2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70天时,3号反应器内PN和PS含量分别为318.89 mg·g~(-1)和28.51 mg·g~(-1),污泥沉降指数(SVI)为35.22 mL·g~(-1),性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)~(-1)和5.84 mg·(L·h)~(-1),对TP去除速率分别为0.44 mg·(L·h)~(-1)和0.51 mg·(L·h)~(-1)。由此可见,经SiO2包覆后所制备的Fe_3O_4@SiO_2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR活性污泥脱氮除磷性能影响提供参考。  相似文献   

8.
为去除水中Sb(Ⅲ),采用改进的共沉淀法制备抛光污泥掺杂Fe_3O_4吸附剂(HCO/Fe_3O_4),并采用海藻酸钠(SA)固化交联形成HCO/Fe_3O_4复合微球吸附剂(SAB);利用吸附序批实验考察了pH、温度和共存离子对SAB吸附Sb(Ⅲ)效果的影响。结果表明,制备SAB的HCO/Fe_3O_4和SA最佳质量分数分别为2.5%和2.0%。在pH为7,温度为25℃时吸附72h,投加4.0g/L SAB对初始质量浓度为20.0 mg/L的Sb(Ⅲ),去除率达到80%以上。NO_3~-和SO_4~(2-)对SAB吸附Sb(Ⅲ)没有显著影响,而10mmol/L PO_4~(3-)对SAB吸附Sb(Ⅲ)有微弱的促进作用。SAB对Sb(Ⅲ)的吸附符合Langmuir模型和准二级动力学模型,吸附过程结合了化学吸附(离子交换)与物理吸附(扩散反应)作用。  相似文献   

9.
以自制壳聚糖小球为载体,采用吸附固定法制备固定化嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia DHHJ),并将其用于羽毛废弃物降解。结果表明,采用3.0%(质量分数)的壳聚糖制成的壳聚糖小球的形态较好,经高压灭菌后弹性增加,呈多孔状,有很强的吸水性,有利于细菌的吸附固定和生长;在细胞稀释液中加入10%(质量分数)的壳聚糖小球,固定时间设为2d时,制得的固定化小球在发酵过程中释放的有效活菌数最多,可达7.0×106 cfu/mL;在连续10次、共计40d的序批发酵降解过程中,固定化菌的羽毛降解率和发酵液中的角蛋白酶酶活均保持在最大值的80%以上。固定化菌的发酵稳定性较强,能在较长时间内稳定、有效地降解羽毛,具有连续发酵潜力;固定化菌发酵降解羽毛的最佳工艺条件为:小球投加量50mg/mL,羽毛投加量25mg/mL,摇床转速130r/min,发酵5d。  相似文献   

10.
为考察异养硝化-好氧反硝化细菌的包埋固定及其氨氮降解特性,对一株异养硝化-好氧反硝化细菌A.feacalis strain NR的包埋固定进行了研究,并与游离菌处理氨氮效果进行对比,考察包埋菌降解氨氮的优势。采用聚乙烯醇(PVA)、海藻酸钠(SA)以及PVA/SA混合物分别作为包埋载体,发现PVA/SA混合物作为包埋载体其理化性能最佳,更适合作为包埋载体;利用单因素实验寻求PVA及SA含量、交联时间、包菌量4个因素的合理水平,并采用正交实验对上述4个因素进行优化,获得包埋较优条件为:PVA含量10%、SA含量0.4%、交联时间4 h、包菌量10%;在此条件下制备包埋小球,并得出包埋小球在基础培养基中的最佳投加量为10 g/(150 m L基础培养基);之后考察了温度、pH这2个因素对包埋小球降解氨氮效果的影响,得到包埋小球的最佳氨氮降解条件为:30℃、pH=7;通过对比不同温度及不同pH条件下包埋小球与游离菌对于氨氮的处理效果,发现包埋小球对低温及酸性条件更具有耐受性,表现出优于游离细菌的氨氮降解效率。  相似文献   

11.
采用化学沉淀法与液相复合方法联合制备磁性无机-有机Fe_3O_4/纤维素复合材料。采用扫描电镜及红外光谱对其进行结构表征,以亚甲基蓝溶液为模拟废水,考察了接触时间、溶液初始pH及反应温度等因素对其吸附性能的影响,分别用准一级动力学和准二级动力学方程对数据进行拟合。结果表明,温度为22℃,溶液初始pH为7.55,Fe_3O_4/纤维素纳米复合材料加量为0.67 g·L~(-1),接触时间2 h,30 mg·L~(-1)亚甲基蓝脱色率达99.20%,准二级动力学模型能更好地描述Fe_3O_4/纤维素复合材料对亚甲基蓝的吸附行为。同时,Fe_3O_4/纤维素纳米复合材料具有较强的磁性,可通过简单的磁铁吸引作用进行分离。  相似文献   

12.
采用共沉淀法制备四氧化三铁/石墨烯(Fe_3O_4/GE)材料,并对其进行表征,将其与H_2O_2组成非均相类Fenton体系用来预处理污泥,发现此类Fenton体系能显著降低污泥比阻(SRF),并深入分析其作用机理。研究了pH、反应时间、反应温度以及Fe_3O_4/GE-H_2O_2投加量对污泥胞外聚合物(EPS)破解的影响。结果表明,适宜反应条件为:pH 4.0,反应时间为90 min,反应温度为50℃,Fe_3O_4/GE投加量为1 g·L~(-1),H_2O_2与Fe_3O_4/GE投加量之比控制在8~12之间。在该条件下,污泥上清液中的SCOD、多聚糖和蛋白质浓度分别由56.47、11.48和8.21 mg·L~(-1)增加到498.31、406.72和286.29 mg·L~(-1)。Fe_3O_4/GE-H_2O_2非均相类Fenton体系在有效破解EPS的同时,对于污泥的脱水性能也有明显的改善作用,促进了污泥的后续处理。  相似文献   

13.
通过共沉淀法将四氧化三铁(Fe_3O_4)纳米粒子负载于凹凸棒土(ATP)制备出兼具吸附与催化性能的非均相类芬顿催化剂ATP@Fe_3O_4。采用SEM(扫描电子显微镜)、XRD(X射线衍射)、XPS(X射线光电子能谱)、VSM(振动磁强计)等对材料的结构进行了表征分析,并研究了其对催化过硫酸盐(PS)降解四环素(TC)的效果。结果表明,ATP@Fe_3O_4复合材料是活化过硫酸盐(PS)生成硫酸根自由基(SO_4~-)强有力的催化剂,可大幅提高PS对水溶液中四环素的降解能力。当PS浓度为10 mmol·L~(-1)、ATP@Fe_3O_4投加量为1.5 g·L~(-1),其对pH=3.9的80 mg·L~(-1)四环素溶液的降解率在90 min可达98.75%。负载于ATP表面的Fe_3O_4粒子和部分溶解于水中的Fe~(2+)共同催化PS生成SO_4~-,将TC氧化为CO_2、H_2O和中间体,是ATP@Fe_3O_4/PS体系去除四环素的主要机理。以上研究结果可为催化材料的应用提供参考。  相似文献   

14.
为探索微波、过渡金属对过硫酸盐的活化效应,采用微波强化活性炭负载铁铜(Cu/Fe_3O_4/AC)催化过硫酸钠(SPS)处理邻苯二甲酸二丁酯(DBP)废水,研究了影响DBP降解效果的主要因素,并比较了不同工艺对DBP的降解效果。结果表明,微波强化Cu/Fe_3O_4/AC-SPS体系降解DBP的主要影响因素有反应温度、反应时间、SPS投加量以及初始pH。最佳反应条件下(温度为70℃、反应时间为25min、SPS∶DBP(摩尔比)为50∶1、初始pH为7.0),投加0.1g Cu/Fe_3O_4/AC,DBP去除率达到96.96%,微波、Cu/Fe_3O_4/AC和SPS发生协同效应。  相似文献   

15.
在实验室内对使用纳米四氧化三铁(Fe_3O_4)和纳米γ-三氧化二铁(γ-Fe_2O_3)作为聚合氯化铝(PACl)的助凝剂去除水体中铜绿微囊藻的效果进行了研究。结果表明,以纳米Fe_3O_4或纳米γ-Fe_2O_3为助凝剂,能够降低PACl的投加量,提高沉降速率,进而缩短沉降时间,且对铜绿微囊藻的去除效果明显优于单独使用PACl。在藻浓度为106个/m L的条件下,为了达到相同的除藻效果,单独使用PACl的投量要比同时投加纳米Fe_3O_4或纳米γ-Fe_2O_3时多出1倍左右;在不加磁场条件下,要达到同样的处理效果,用纳米Fe_3O_4或纳米γ-Fe_2O_3做助凝剂比单独投加PACl节约一半以上的时间;而在加磁场的条件下,用纳米Fe_3O_4或纳米γ-Fe_2O_3做助凝剂甚至只需要10 min就能达到比单独投加PACl沉降60 min更高的处理效率。该方法对不同浓度级的铜绿微囊藻都有较好的去除效果,具有一定的实际应用价值。  相似文献   

16.
选用聚乙烯醇(PVA)和海藻酸钠(SA)混合物作为包埋载体,对筛选出的耐盐复合菌群固定化制备方法进行了研究。通过正交实验分别研究了包埋载体不同配比、包菌量、硅藻土投加量和交联时间对固定化生物硅藻土小球的性能及其对冲厕污水中COD去除效果的影响。研究结果表明,固定化生物硅藻土小球最佳包埋条件是:聚乙烯醇9%,海藻酸钠0.5%,包菌量l:1,硅藻土20g/L,交联时间为24h。在该条件下,小球成球效果较好,机械强度高,对海水冲厕污水中COD的去除率达86.95%。  相似文献   

17.
采用水热合成法制备出了具有较高催化活性的催化剂四氧化三铁(Fe_3O_4),并利用Fe_3O_4活化过硫酸盐降解活性黑5,考察了初始pH、Fe_3O_4投加量、活性黑5初始浓度和过硫酸盐投加量对活性黑5降解效果的影响。结果表明,Fe_3O_4活化过硫酸盐降解活性黑5的最佳条件为初始pH 6、活性黑5初始质量浓度50mg/L、过硫酸盐投加量6mmol/L、Fe_3O_4投加量2.0g/L。在最佳条件下,反应180min,活性黑5的降解率达到80.2%,Fe_3O_4反复使用5次后,活性黑5的降解率仍能达到77%以上。活性黑5的降解途径为:偶氮键打开产生苯环中间产物和萘环中间产物,萘环中间产物逐步转化为邻苯二甲酸酐→邻苯二甲酸→苯甲酸;苯环中间产物逐步转化为对氨基苯磺酸→硝基苯和对氨基苯酚,对氨基苯酚转化为对苯二酚;最终被彻底氧化降解成CO_2、H_2O等无毒小分子物质。活性黑5在降解过程中对植物的毒性先升高后降低。  相似文献   

18.
以高岭土为负载材料分别用吸附和包埋2种方法固定GY2B优化其降解苯酚的性能。结果显示,采用吸附固定法,高岭土投加浓度为20 g/L时效果最佳,苯酚降解效率相比游离GY2B提升约10%,降解时间由12 h缩短至6 h。包埋法当固定化小球组分投加为高岭土1%(m/v)、聚乙烯醇10%(m/v)、海藻酸钠0.3%(m/v)、GY2B菌悬液10%(v/v)时降解效果最佳,相比游离菌降解效率提升约14%,降解时间缩短至6 h。2种固定方式与游离菌相比均可提升苯酚的降解效果,其中包埋法效果更优,具有更大的适用推广前景。  相似文献   

19.
包埋固定化微生物法处理含油废水研究   总被引:1,自引:0,他引:1  
本研究通过包埋固定化微生物法固定除油(Y1#菌),用于处理含油废水,并以水体中乳化油去除率为指标考察了影响乳化油降解的各种因素.选用聚乙烯醇(PVA)-海藻酸钠(SA)复配作为包埋固定化载体材料,制备成固定化微生物小球(IMB),通过实验优化了IMB制备的工艺条件.连续批次除油实验结果表明,在25~40℃,固液比1∶10,HRT为6 h的条件下,进水油含量在20~50 mg/L,乳化油去除率可达85%~90%,出水油含量低于5 mg/L.  相似文献   

20.
为探讨O_3/H_2O_2体系降解水中青霉素G(PCN)的效能及其降解机理,分别考察了在降解过程中pH、O_3投加量和H_2O_2投加量对PCN和COD去除效果的影响,通过实验数据得出了PCN降解动力学方程;并采用傅里叶红外光谱和液相色谱-质谱联用分析探讨了PCN在O_3氧化过程中的中间产物变化及其降解规律。结果表明:在初始ρ(PCN)为25 mg·L~(-1)、pH=10、O_3投加量为1.48_(g·)L~(-1)、H_2O_2投加量为7.84 mmol·L~(-1)、温度为20℃的条件下,反应10 min后PCN可全部被降解,反应3h后COD的去除率达到71.9%;O_3的反应级数为0.697 3,在降解过程中,O_3初始浓度对反应速率的影响最大;反应活化能为E_a=27.59 kJ·mol~(-1)该反应活化能较低,说明此反应容易发生;经氧化降解后,PCN的抑菌结构被破坏,并且产物中可能含有羧酸类和胺类化合物。以上研究结果对解决水体中PCN污染问题具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号