首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要研究垃圾填埋污染清单中的气体排放量问题,填埋气的主要成分是二氧化碳和甲烷,二者都是重要的温室气体,通过采用三种产气估算模型(LandGEM模型、IPCC推荐的模型和概化分子模型)分别估算了单位垃圾填埋产生的甲烷和二氧化碳排放量,并对估算结果做了对比分析。最后采用LandGEM模型计算的结果,得出单位质量垃圾在整个生命周期中的产气量。  相似文献   

2.
生活垃圾填埋场填埋作业台阶甲烷排放研究   总被引:3,自引:1,他引:3  
为了解我国生活垃圾填埋场填埋作业期间的甲烷排放情况,采用DM(Default Methodology)模型、LandGEM(Landfill Gas Emission Model)模型与静态箱法模拟和测试计算了杭州市天子岭生活垃圾填埋场填埋作业台阶1h的甲烷排放量,结果分别为3.65×103m3、1.52×103m3和1.11×103m3;与DM模型相比,LandGEM模型的模拟结果与现场测试结果更接近.生活垃圾填埋场在填埋作业台阶运行期间(约2年)产生的甲烷量约占理论产生总量的50%,而填埋气体主动收集系统收集率仅为43%,即在此期间未被收集利用而排放的甲烷量约占理论产生总量的29%.因此,调控填埋作业期间的甲烷排放是我国控制生活垃圾填埋场甲烷排放总量的关键之一.  相似文献   

3.
分析了4种典型的生活垃圾填埋处理甲烷产气量模型:IPCC模型、化学计量式模型、COD模型和生物降解理论模型;利用这4种模型估算沈阳市生活垃圾的甲烷产气总量,对计算结果的差异进行比较讨论;分析了4种模型的优缺点及其不同的适用性;根据沈阳市城市生活垃圾的特点,建议采用生物降解理论模型来估算沈阳市垃圾填埋甲烷产气量。  相似文献   

4.
以敦煌市城市生活垃圾处理场为例,分别用Scholl Canyon模型、Mgmemcon模型和IPCC推荐的一阶衰减模型(FOD)估算填埋垃圾在运营期及封场后的产气量,对比分析3种模型估算出填埋气在不同时期的产气规律,并据此进行大气环境影响评价,探讨不同产气模型的估算结果在大气环境评价等级、评价内容、大气环境质量现状监测要求和环境影响的范围及程度等方面的差异。结果表明Mgmemcon模型估算的年最大产气量最小,与其它两种方法差异较大;Scholl Canyon模型和FOD模型预测年最大产气量及相应年份一致。合理选择填埋气预测模型,是客观评价垃圾填埋场建设项目大气环境影响的基础,也是项目建设具备环境可行性的重要依据。  相似文献   

5.
填埋是北京市垃圾处理的主要方式,占90%。填埋过程中产生的填埋气(LFG)是一种高热值清洁能源,对LFG有效利用的前提是准确的估算LFG产生量。文章采用LandGEM模型对北京市垃圾填埋场LFG产生量进行估算,2012年LFG产生量为19 653 m3/h,LFG产生量高峰在2016年达到24 003 m3/h。LFG产气量对模型参数最终CH4产生潜力(L0)的敏感性高于CH4产生率(k)的1.4倍:其对L0的敏感性指数恒等于1,对k的敏感性指数在0.547~0.802之间波动。基于北京市垃圾组分确定模型参数(L0=43.3 m3/t、k=0.051 a-1)为最佳值。北京市垃圾填埋场LFG收集效率为0~78%,平均值为35%。2009-2011年,模型估算北京市填埋场LFG收集量比实际收集量平均高9%,预测值和实际值吻合较好,表明该模型和参数的选择具有较高准确性,为LFG利用项目提供较为切合实际的设计依据。  相似文献   

6.
采用IPCC与可生物降解两种预测模型对安徽省2020年城市生活垃圾填埋气甲烷产量进行预测,并分析比较模型预测结果;进而通过填埋气发电项目对安徽省垃圾填埋气二氧化碳减排潜力进行探讨。结果表明:预计到2020年,安徽总的生活垃圾清运量可达到758.9万吨,可产生的生活垃圾填埋气甲烷产量约45.5万吨,若这些甲烷气体不经处理直接排放到大气中,相当于排放约900万吨的CO2,因此,安徽省垃圾填埋气CO2减排潜力巨大,其基于清洁发展机制(CDM)的减排潜力可达1.46×109吨。该研究对促进安徽省CDM项目的开发,充分利用CDM资金促进安徽经济的可持续、健康发展具有一定的指导意义。  相似文献   

7.
苏州市生活垃圾处理碳足迹核查   总被引:2,自引:1,他引:1  
根据《PAS2050规范》的指导,结合生命周期评价技术方法和LandGEM模型,对苏州市生活垃圾填埋和焚烧处理的生命周期过程进行了碳足迹核查. 详细列出了垃圾处理过程中可能的温室气体排放源,计算各排放源的电耗或能耗,并通过与温室气体排放系数相乘最终转化为苏州市生活垃圾处理温室气体排放量. 结果表明:苏州市填埋处理1 t生活垃圾整个生命周期过程中温室气体的排放量(以CO2当量计)为1 942.47 kg,焚烧处理为-180.87 kg. 按照目前苏州市生活垃圾处理权重进行分配,可得苏州市处理1 t生活垃圾整个生命周期过程中温室气体的排放量(以CO2当量计)为880.80 kg. 在整个核查过程中,考虑了在填埋和焚烧处理时发电对温室气体带来的减量效应.   相似文献   

8.
生物反应器填埋技术及其应用   总被引:14,自引:0,他引:14  
本文分析了城市生活垃圾的厌氧、好氧及准好氧填埋方式的特点,介绍了当前国内外垃圾渗滤水场内循环处理的两种趋势:(1)以欧美国家为主的生物反应器填埋技术;(2)以日本为主的循环式准好氧填埋技术。根据我国城市垃圾有机物含量高的特点,提出了将准好氧填埋技术与生物反应器填埋技术特点相结合的垃圾渗滤液场内循环处理的设计思路。  相似文献   

9.
LCA方法在城市垃圾管理中的应用   总被引:2,自引:0,他引:2  
以福州市城市垃圾处理为例,应用生命周期评价(LCA)方法分析了城市垃圾采用卫生填埋、焚烧两种不同的处理和处置方式的成本消耗,以及向大气、水体和土壤环境排放污染物所造成的环境影响,进而提出对城市生活垃圾进行可持续管理的策略。  相似文献   

10.
填埋气(LFG)是一种利用价值高的高热值清洁燃料,对LFG进行控制和利用已成为城市垃圾处置技术的重要组成部分,但有效开发利用的前提是对LFG产量及产气速率进行较为准确的估算。重点分析了两中典型的生活垃圾填埋气估算模型:Land GEM模型、Scholl Cayon模型,探讨了这两种模型参数的确定。并以北京市某填埋场为例,运用两种模型预测该填埋场填埋气产气量,比较讨论分析了两模型预测结果的差异,为LFG的利用提供了设计依据。  相似文献   

11.
美国城市垃圾目前处理状况是,80%垃圾进行填埋,10%焚烧处理,10%作为有用物质进行回收。美国环保局要求到1992年垃圾在发生源排放量削减20%,焚烧处理垃圾量增加至20%,填埋处理垃圾量削减50%。并要积极采用新的处理技术和将垃圾制成堆肥返回农地。据美国环保局调查,即使对城市垃圾中有用物质进行回收和增加焚烧炉等措施,由于垃圾排出量增加,到2000年由填埋处理的垃圾量推测不会比现在有多大变化。因此提出要尽量将垃圾中有用物质回收,积极发展焚烧处理技术,减少对填埋处理的依赖。具体措施如下: ①设立回收有用物质和削减废弃物排放  相似文献   

12.
垃圾热化学转化利用过程中碳排放的两种计算方法   总被引:4,自引:1,他引:3  
为了明确城市生活垃圾焚烧和热解两种热化学方式处理过程中温室气体的排放量(简称"碳排放"或GHG),分别采用生命周期评价方法(LCA)和政府间气候变化专门委员会(IPCC)制定的2006国家温室气体排放清单指南(简称"IPCC2006指南")进行了核算,并计算了两种垃圾热化学处理方式相对于填埋处理的GHG减排量.结果表明,两种核算方法计算所得的不同垃圾处理方式的碳排放趋势基本一致,但基于IPCC2006指南计算出的GHG减排量高于LCA方法的计算结果.相对填埋处理而言,焚烧处理的GHG减排量从LCA法的597~660kg(以CO2当量计,下同)提高到IPCC2006指南法的648~747kg;垃圾热解发电的GHG减排量从LCA法的535kg提高到IPCC2006指南法的589kg.同时,对这两种核算方法的特点及在我国的适用性进行了分析,研究认为LCA法和IPCC2006指南可以结合使用以促进我国GHG核算机制的完善.  相似文献   

13.
随着城市垃圾填埋量的增加,填埋气体造成的环境问题被愈加重视,国内外对填埋气的产生和排放也进行了大量研究,以温室气体和挥发性有机物为主要研究对象。综述了最近几年国内外学者针对填埋场垃圾和填埋气中3种重要温室气体和挥发性有机物(VOCs)的产生模型、产量估计及其监测方法优劣、减排和资源化利用等领域进行的研究成果,指出后续对填埋气间的相关性和由此产生的次生污染物进行适当研究的必要性,与填埋气产生排放相关的气象条件监测也应加强,旨在为填埋气体的相关研究提供参考。  相似文献   

14.
苏州垃圾填埋生命周期清单分析   总被引:2,自引:0,他引:2  
采用理论计算和实测相结合的方法,求得了苏州七子山垃圾填埋埋场的生命周期清单。实践证明,理论计算和实测相结合是清单分析的有效方法,对今后的同类研究具有参考意义。研究中获得的清单包括生活垃圾的收集和运输、垃圾填埋的物耗和能耗,以及每吨填埋垃圾所排放的大气和水污染物的量,并考察了填埋气用于发电后对清单的影响。这些结果可以为众多的产品生命周期评价提供数据支持。  相似文献   

15.
中国城市生活垃圾处理及趋势分析   总被引:25,自引:8,他引:17       下载免费PDF全文
介绍了城市生活垃圾的主要处理方法及目前中国城市生活垃圾的处理现状,通过实际调研和统计分析表明:中国城市生活垃圾的处理方式主要以填埋为主,占总处理量的95%以上;卫生填埋处理能力较低,处理水平参差不齐,有较大的区域性差异.基于城市生活垃圾清运量与国民经济发展水平、非农业人口数量等驱动因子相关,建立了城市生活垃圾清运量预测模型,并利用该预测模型预测了不同情景下未来中国城市生活垃圾清运量,比较分析了不同模型的预测结果,表明非农业人口预测结果与GDP和人均GDP预测结果有一定的差异,非农业人口预测结果更接近于中国的实际情况.   相似文献   

16.
主压缩沉降阶段垃圾填埋体渗透特性研究   总被引:1,自引:0,他引:1  
刘辉  黄涛  张驰 《环境科学》2009,30(12):3729-3733
针对垃圾填埋体的研究主要集中在降解及垃圾渗滤液处理,而其渗透特性研究不足的现状,选取处于4种压力状况下的垃圾填埋体,对其主压缩沉降阶段渗透特性进行室内物理试验,结合试验数据对垃圾填埋体渗透性能变化规律进行分析研究.结果表明,4种压力状况下垃圾填埋体试验测定分析符合达西定律,其COD变化处于产酸阶段,对渗透性能的影响可以不予考虑;在此基础上,对垃圾渗透系数计算表明,处于主压缩沉降阶段内,除没有施加压力状况下垃圾填埋体渗透性能变化规律与其他试验表现不尽相同外,其他垃圾填埋体渗透系数变化大致符合自然指数规律,而4种压力状态下的垃圾填埋体渗透系数数值均在10~(-4.5)~10~(-5.3) m·s~(-1)的范围内,与典型垃圾渗透系数的代表值相一致.  相似文献   

17.
生活垃圾填埋过程含水率变化研究   总被引:3,自引:1,他引:2  
为分析垃圾在好氧和厌氧条件下降解过程中含水率变化的规律,采用时域反射测量(time domain reflectometry,TDR)技术监测了垃圾填埋过程中含水率的变化情况.结果表明,填埋过程中垃圾体积含水率随时间逐渐增大,垃圾持水性能不断提高.好氧初期垃圾内水量变化与含水率变化正相关,好氧后期则为负相关;厌氧填埋过程中,垃圾沉降压缩是含水率变化的主要原因.垃圾TDR读数与基于物质衡算的垃圾体积含水率计算值之间有较好的相关性,好氧填埋过程两者最大偏差约为±5%,厌氧填埋过程两者最大偏差约为±2%,TDR技术适用于实际填埋工程的含水率测量.  相似文献   

18.
生活垃圾填埋气体产量的现场测试及IPCC推荐模型的校验   总被引:3,自引:2,他引:1  
罗钰翔  王伟  高兴保 《环境科学》2009,30(11):3427-3431
为了获得深圳市玉龙坑垃圾填埋场封场后填埋气体的实际产量,采用改进的现场抽气方法分别测定了填埋场内4口抽气井抽气影响区域内填埋气体的产量,计算获得其产甲烷速率分别为14.67×10-5、9.46×10-5、9.55×10-5和4.28×10-5m3/(t.h).据此计算出2005年玉龙坑垃圾填埋场的甲烷产率为322 m3/h,表明该填埋场填埋气体在经济性上已经失去了回收利用价值.采用此实测数据对IPCC推荐模型进行校验,发现垃圾降解的半衰期是影响IPCC推荐模型预测准确性的关键参数.我国城市生活垃圾中可降解有机物以厨余垃圾为主,分解周期较短,垃圾降解的半衰期短于IPCC模型的推荐取值范围.为了准确预测填埋气体的产量,需要在充分调查我国生活垃圾特性的基础上,确定模型参数的合理取值,提高IPCC推荐模型在我国的适用性.  相似文献   

19.
我国填埋场设计阶段,渗滤液产量计算结果往往偏小.参照山谷型填埋场,建立了一个长400 m,宽500 m的水量平衡计算模型,模型中垃圾体高50 m,分5个填埋阶段,每阶段填高10 m,用时2 a,共填埋10 a.利用该模型,分阶段计算填埋垃圾初始含水率对渗滤液来源组成和总产量的影响.渗滤液总产量由降雨入渗量和垃圾自身渗滤液产量组成,初始含水率越高,垃圾自身渗滤液产量和渗滤液总产量越大,垃圾自身渗滤液产量所占渗滤液总产量的比例也越高.当填埋垃圾初始含水率分别为27%、40%、50%和60%时,日平均渗滤液总产量分别为272、583、823和1 063 m3.d-1,垃圾自身渗滤液产量分别为-144、168、408和647 m3.d-1.垃圾初始含水率高于50%时,自身渗滤液产量占渗滤液总产量的比例超过50%,成为渗滤液总产量的主要部分.目前中国规范中采用的渗滤液产量计算方法,未考虑垃圾自身渗滤液产量,当填埋垃圾初始含水率较高时,计算结果偏小.基于上述水量平衡分析结果,进一步提出了包括垃圾自身渗滤液产量的修正计算公式,并通过2个大型中国南方填埋场的现场实测数据进行了验证.  相似文献   

20.
根据城市生活垃圾和其处理技术的特点,运用灰色关联法建立数学模型,并应用于南方某城市生活垃圾处理方案的优选。该城市2020年的预计生活垃圾产生情况:总人口为131.5万,生活垃圾产生量为1404.5 t/d,其中可回收垃圾量为483.5 t/d。拟采用备选方案:方案1为卫生填埋;方案2为分类资源化,可回收垃圾回收,不可回收垃圾卫生填埋;方案3为分类资源化,可回收垃圾回收,不可回收垃圾焚烧。通过灰色关联模型计算,求得灰色关联度ε2>ε3>ε1。结果表明,方案2为该城市生活垃圾处理的最佳方案;表明灰色关联法简易可行,利用其得出的结论具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号