首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Decreases in cell-nitrogen quota resulted in changes in the carbon-based quantum yield of photosynthesis, the chlorophyll a-specific absorption coefficient, and in vivo fluorescence in the marine diatom Chaetoceros gracilis in laboratory experiments performed in 1983 and 1984. The three parameters were independently determined for the two spectral regions dominated by either chlorophyll a or fucoxanthin absorption. As cell-nitrogen quota decreased, the quantum yield for both pigments decreased; the specific absorption coefficient for chlorophyll a and the in vivo chlorophyll a fluorescence excited by each pigment increased. The observed increase in the in vivo fluorescence per chlorophyll a could be partially attributed to the increased specific absorption coefficient for chlorophyll a; the remainder of the fluorescence increase was related to a decline in photosystem activity. Energy transfer efficiency between light-harvesting pigments appeared to be maintained as cell-nitrogen quota decreased. The decrease in a fluorescence index [(F DCMU-F O)/F DCMU] with nitrogen starvation suggested a decrease in Photosystem II activity. These results imply that decreases in reaction center and/or electron-transport system activity were responsible for the decline in rates of photosynthesis under conditions of notrogen deficiency.  相似文献   

2.
Cyanobacterial symbionts in the sponge Diacarnus erythraenus from the Red Sea were identified in both adult sponges and their larvae by 16S rDNA sequencing. A single cyanobacterial type was found in all samples. This cyanobacterial type is closely related to other sponge cyanobacterial symbionts. The cyanobacterial rDNA, together with the morphological analysis by electron and fluorescence microscopy, provided evidence for vertical transmission of the symbionts in this sponge. In addition, we show phenotypic plasticity of the symbionts inside the sponge, probably as a result of variability in light availability inside the sponge tissue. Finally, the reproduction of Diacarnus erythraenus is also described.Matan Oren, Laura Steindler have contributed equally to the work.  相似文献   

3.
The Belizean reef coral Agaricia tenuifolia Dana forms aggregations in which rows of thin, upright blades line up behind each other. On average, the spacing between blades increases with depth and hence with decreasing ambient irradiance. We designed and built a small, inexpensive light meter and used it to quantify the effect of branch spacing on light levels within colonies at varying distances from branch tips. Concurrently, we measured photosynthetic pigment concentrations and population densities of symbiotic dinoflagellates (zooxanthellae) extracted from coral branches of colonies with tight (≤3 cm) vs wide (≥6 cm) branch spacing, collected at 15 to 17 m and from colonies with tight branch spacing collected at 1 to 2 m. Light levels decreased significantly with tighter branch spacing and with distance from the branch tips. Total cellular pigment concentrations (chlorophylls a, c 2 and peridinin) as well as chlorophyll a:c 2 and chlorophyll a: peridinin ratios all increased significantly with distance from the branch tip, indicating very localized differences in photoacclimation within individual branches. Zooxanthellae from colonies with widely-spaced branches displayed significantly lower chlorophyll a:c 2 and chlorophyll a:peridinin ratios, and were present at significantly higher population densities than those from colonies with tightly-spaced branches collected at the same depth (15 m). Tightly-spaced colonies collected from shallow environments (1 to 2 m) displayed pigment ratios similar to those from widely-spaced colonies from deeper water (15 m), but maintained zooxanthellae populations at levels similar to those in tightly-branched colonies from deeper water. Thus, variation in colony morphology (branch spacing and distance from branch tip) can affect symbiont physiology in a manner comparable to an increase of over 15 m of water depth. These results show that a host's morphology can strongly determine the microhabitat of its symbionts over very small spatial scales, and that zooxanthellae can in turn display steep gradients in concordance with these altered physical conditions. Received: 12 June 1997 / Accepted: 24 June 1997  相似文献   

4.
Epizoic worms were found to occur on certain coral colonies from reefs off the coast of Eilat (Red Sea). We identified 14 coral species infested by acoelomorph worms at a depth range of 2–50 m. The host corals were all zooxanthellate and included both massive and branching stony corals and a soft coral. Worms from all hosts were identified as belonging to the genus Waminoa and contained two distinct algal symbionts differing in size. The smaller one was identified as Symbiodinium sp. and the larger one is presumed to belong to the genus Amphidinium. Worm-infested colonies of the soft coral, Stereonephthya cundabiluensis, lacked a mucus layer and exhibited distinct cell microvilli, a phenotype not present in colonies lacking Waminoa sp. In most cases, both cnidarian and Acoelomorph hosts displayed high specificity for genetically distinctive Symbiodinium spp. These observations show that the epizoic worms do not acquire their symbionts from the “host” coral.  相似文献   

5.
The cellular fluorescence of chlorophyll a in natural phytoplankton was measured during vertical profiling in marine coastal waters. The ratio of in situ fluorescence to chlorophyll a concentration, which was considered as an index of cellular fluorescence, varied over a wide range, with large changes occurring both within the water column and between profiling sites. The variations were caused in part by an inhibition in the fluorescence of cells exposed to intense sunlight. The inhibition, which occurred at irradiances exceeding 0.15 langley (ly)/min, led to diel fluctuations in the fluorescence of those phytoplankton near the sea surface. The remaining variations were independent of changes in temperature, but were unexplained. Both light-dependent and light-independent variations in cellular fluorescence will affect the accuracy of the continuous, fluorometric measurement of in vivo chlorophyll.  相似文献   

6.
The obligate symbiotic relationship between dinoflagellates, Symbiodinium spp. and reef building corals is re-established each host generation. The solitary coral Fungia scutaria Lamarck 1801 harbors a single algal strain, Symbiodinium ITS2 type C1f (homologous strain) during adulthood. Previous studies have shown that distinct algal ITS2 types in clade C correlate with F. scutariaSymbiodinium specificity during the onset of symbiosis in the larval stage. The present study examined the early specificity events in the onset of symbiosis between F. scutaria larvae and Symbiodinium spp., by looking at the temporal and spatial infection dynamics of larvae challenged with different symbiont types. The results show that specificity at the onset of symbiosis was mediated by recognition events during the initial symbiont—host physical contact before phagocytosis, and by subsequent cellular events after the symbionts were incorporated into host cells. Moreover, homologous and heterologous Symbiodinium sp. strains did not exhibit the same pattern of localization within larvae. When larvae were infected with homologous symbionts (C1f), ~70% of the total acquired algae were found in the equatorial area of the larvae, between the oral and aboral ends, 21 h after inoculation. In contrast, no spatial difference in algal localization was observed in larvae infected with heterologous symbionts. This result provides evidence of functional differences among gastrodermal cells, during development of the larvae. The cells in the larval equator function as nutritive phagocytes, and also appear to function as a region of enhanced symbiont acquisition in F. scutaria.  相似文献   

7.
Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C types recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
Herein, we characterize a symbiotic relationship between the scyphomedusa Lychnorhiza lucerna and the decapod crustacean Libinia spinosa in Río de la Plata, South America. Of 843 specimens of L. lucerna examined during the study, 69 (8.2 %) hosted L. spinosa within subgenital spaces. The broad spatial and temporal scale of the study, together with the large number of observations made, confirm an association between the two species. Medusae having crab associates were mature and larger than those lacking such symbionts. Adult crabs of both sexes, as well as juveniles and soft-shell individuals, were found as associates of medusae. Analysis of crab stomach contents revealed the presence of nematocysts and copepod remains. Our results suggest that medusae provide protection and possibly access to food for crabs. Benefits related to transportation were not clear and need further evaluation. Crabs of L. spinosa may acquire their scyphozoan symbionts either as larvae planktonic stages or as adult crabs attaching to jellyfish when aggregating close to bottom.  相似文献   

9.
Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Galápagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven.  相似文献   

10.
The metabolite exchange in alga–invertebrate symbioses has been the subject of extensive research. A central question is how the biomass of the algal endosymbionts is maintained within defined limits under a given set of environmental conditions despite their tremendous growth potential. Whether algal growth is actively regulated by the animal cells is still an open question. We experimentally evaluated the effect of inorganic nutrient supply and host-animal nutritional status on the biomass composition, growth and cell-cycle kinetics of the endosymbiotic dinoflagellate Symbiodinium pulchrorum (Trench) in the sea anemone Aiptasia pulchella. Dinoflagellates in anemones starved for 14?d exhibited lower growth rates, chlorophyll content and higher C:N ratios than in anemones fed Artemia sp. (San Francisco brand #65034) nauplii every 2 d, indicating N-limitation of the algae during starvation of the host animal. Manipulation of the dissolved inorganic nutrient supply through ammonium and phosphate additions induced a rapid recovery (half time, t ½~ 2?d) in the C:N ratio of the dinoflagellate cells to levels characteristic of N-sufficient cells. The mitotic index and population growth rate of the dinoflagellate symbionts subjected to this enrichment did not recover to the levels exhibited in fed associations. Flow cytometric analysis of dinoflagellate cell size and DNA content revealed that the duration of the G1 phase (first peak of DNA content: 70 to 100 relative fluorescence units, rfu) of their cell cycle lengthened dramatically in the symbiotic state, and that the majority of algal biomass increase occurred during this phase. Covariate analysis of dinoflagellate cell size and DNA-content distributions indicated that the symbiotic state is associated with a nutrient-independent constraint on cell progression from G1 through the S phase (intermediate DNA content: 101 to 139?rfu). This analysis suggests that the host-cell environment may set the upper limit on the rate of dinoflagellate cell-cycle progression and thereby coordinate the relative growth rates of the autotrophic and heterotrophic partners in this symbiotic association.  相似文献   

11.
Giant clams form a symbiosis with photosynthetic algae of the genus Symbiodinium that reside in clam mantle tissue. The allometry of symbiont photosynthetic performance was investigated as a mechanism for the increasing percentage of giant clam carbon respiratory requirements provided by symbionts as clam size increases. Chlorophyll fluorescence measurements of symbionts of the giant clam Tridacna maxima were measured during experiments conducted in September of 2009 using specimens 0.5–200 g tissue wet weight (3–25 cm long), collected from waters around southern Taiwan (N 21°36′, E 120°47′) from July to August of 2009. Light-dependent decreases in effective quantum yield (∆F/F m′) calculated as the noontime maximum excitation pressure over PSII (Q m), relative electron transport rates (rETR), and dark-adapted maximum quantum yield (F v/F m) all varied as a quadratic function of clam size. Both Q m and rETR increased as clam size increased up to ~10–50 g then decreased as clam size increased. F v/F m decreased as clam size increased up to ~5–50 g then increased as clam size increased. Chlorophyll fluorescence measurements of rETR were positively correlated with gross primary production measured during chamber incubations. Overall, symbionts of mid-sized clams ~5–50 g exhibited the highest light-dependent decreases in effective photosynthetic efficiencies, the highest relative electron transport rates, and the lowest maximum photosynthetic efficiencies, and symbiont photosynthetic performance is allometric with respect to host clam size.  相似文献   

12.
Three marine diatoms, Skeletonema costatum, Chaetoceros debilis, and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a, N:chlorophyll a, P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a, and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH4-starved cells contained more chlorophyll a, carbon, nitrogen, silica, and phosphorus per cell volume than NH4-limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a, P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a, N:chlorophyll a, C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH4-limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Contribution No. 943 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

13.
The metal tolerance and metabolic changes in Boehmeria nivea colonized in mining areas are not well known. A hydroponic experiment was conducted to evaluate the impact of antimony (Sb)+arsenic (As) in following combinations (control (no metal), 20+0, 10+10, 40+0, 20+20, and 40+40 mg/L) on phytotoxicity, metal tolerance index (MTI), and chlorophyll fluorescence in B. nivea. This constitutes an initial investigation of metal tolerance and chlorophyll fluorescence in Sb and Sb+As contaminated B. nivea. The high Sb+As 40+40 mg/L produced significant phytotoxicity and MTI in the plant. Progressive higher Sb and Sb+As levels resulted in decreased chlorophyll fluorescence of B. nivea. Exposure to intermediate and high Sb+As levels induced damage in the photosynthesis apparatus of the plant.  相似文献   

14.
The effect of mercuric acetate was studied in culture experiments with the dinoflagellates Scrippsiella faeroense (Paulsen) Balech et Soares, Prorocentrum micans Ehrenberg and Gymnodinium splendens Lebour. Impairment of growth rates, in vivo chlorophyll fluorescence, maximum cell densities and morphological changes served as criteria for assessing sublethal influences. Tests were made using the batch- and continuous-culture techniques. Addition of Hg at concentrations of 0.001 mg.1-1 and higher resulted in reduction of relative growth rates. In a few cases populations recovered from the initial decline and showed new growth. Cell counts corresponded very closely to in vivo chlorophyll fluorescence measurements. Morphological variations were observed in S. faeroense, which responded (even in sublethal concentrations) by bursting it's thecae, releasing naked motile cells and forming vegetative resting stages. The problems of optimal algal-bioassay methods are discussed also, in the light of results obtained by other authors.  相似文献   

15.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   

16.
Skeletonema costatum (Greville) Cleve isolated from Narragansett Bay, USA, was incubated at 3 light intensities (ca. 0.008, 0.040 and 0.075 ly min-1) under a 12 h light: 12 h dark (12L:12D) photoperiod at 2°, 10° and 20°C. Cellular chlorophyll a increased at intensities less than ca. 0.040 ly min-1; increases occured within one photoperiod at temperatures above 10°C. Cellular carbohydrate increased with light intensity at all temperatures; increases during the photophase were due to net production of the dilute acid-soluble fraction. Cellular protein increased during the photoperiod at 10° and 20°C; there was little difference in cellular protein among all cultures after one photoperiod. The rate at which cellular chlorophyll a increased in response to a decrease in light suggests that diel variation in cellular chlorophyll a is temperature-dependent in S. costatum. Protein: carbohydrate ratios ranged from ca. 0.5 to 2.0 over a diel cycle; ratios increased at lower intensities and higher temperatures. The diel range in protein:carbohydrate ratios equals that in cultures developing nitrogen deficiency; thus, use of this ratio as an index to phytoplankton physiological state must account for diel light effects.  相似文献   

17.
Observations at sea of large variations in the cellular fluorescence of phytoplankton prompted a study of the fluorescence responses in marine diatoms to light and nutrient stress. When older cultures of Lauderia borealis were exposed to intense light, the in vivo fluorescence of chlorophyll a declined within the first 2 min of exposure. This initial response to light stress appeared to be correlated with a contraction of the chloroplasts. Continued exposure led to a second decline in fluorescence, which required 30 to 60 min for completion. A movement of chloroplasts to the valvar ends of the cell caused this secondary response. Both the contraction and intracellular movement of chloroplasts appeared to be related to both photoinhibition of photosynthesis and diel fluctuations in cellular fluorescence. An investigation of continuous cultures of Cyclotella nana showed that in vivo chlorophyll a fluoresced more strongly in nitrogen-starved cells than in enriched ones. Photoinhibition of cellular fluorescence also increased with the cell's state of nitrogen deficiency.  相似文献   

18.
Laboratory experiments were carried out to determine the influence of symbiotic dinoflagellates (zooxanthellae) on the shell growth, longevity, and reproductive potential of Globigerinoides sacculifer (Brady). Its symbionts were eliminated by 72-h treatment with a photosynthetic inhibitor (DCMU). Symbiont elimination resulted in earlier gametogenesis (shortened survival time) and smaller shell sizes of G. sacculifer when compared to untreated foraminifera grown in sea water. Individuals kept in continuous darkness in untreated sea water also exhibited early gametogenesis, short survival times and small shell sizes. Aposymbiotic foraminifera formed on the average one or two chambers fewer per individual and their rate of shell size increase is slower than symbiont-bearing foraminifera. Symbionts were lysed within perialgal vacuoles of G. sacculifer when subjected to DCMU treatment or kept in continuous darkness. One DCMU-treated group was reinfected with symbionts from crushed G. sacculifer donors. Soon after reinfection, these foraminifera resumed a shell growth rate and exhibited developmental stages that were nearly equivalent to those of untreated individuals, as deduced from their shell size, frequency of sac-like chambers, rate of gametogenesis, and survival time. Our experiments indicate that the symbionts aid in calcification and that elimination of symbionts triggers gametogenesis, thus shortening the life span of the foraminiferal host. The results imply that shell growth in symbiont-bearing planktonic foraminifera occurs mainly in the euphotic zone and that they do not survive for long periods below it.  相似文献   

19.
We used microscopy, reflectance spectroscopy, pigment analysis, and photosynthesis-irradiance curves measured with variable fluorescence techniques to characterise the endolithic communities of phototrophic microorganisms in the skeleton of three massive corals from a shallow reef flat. Microscopic observations and reflectance spectra showed the presence of up to four distinct bands of photosynthetic microorganisms at different depths within the coral skeleton. Endolithic communities closer to the coral surface exhibited higher photosynthetic electron transport rates and a green zone dominated by Ostreobium quekettii nearest the surface had the greatest chlorophyll pigment concentration. However, Ostreobium was also present and photosynthetically active in the colourless band between the coral tissue and the green band. The spectral properties and pigment density of the endolithic bands were also found to closely correlate to photosynthetic rates as assessed by fluorometry. All endolithic communities were extremely shade-adapted, and photosynthesis was saturated at irradiances <7 μmol photons m−2s−1.  相似文献   

20.
Seawater containing natural phytoplankton populations from Vineyard Sound, USA was enriched in the laboratory with three levels each of ammonium and phosphate and with a combination of ammonium and phosphate which provided three different N:P ratios. The addition of ammonium produced more cells and chlorophyll a than the control or the phosphate enrichments. However, enrichment with ammonium and phosphate, regardless of the N:P ratio, yielded the most cells and chlorophyll a. Thus, nitrogen seems to be the primary limiting nutrient, with phosphate showing secondary limiting effects. The ratios of photosynthetic pigments decreased with the increased chlorophyll a production in the enriched cultures. There were no significant changes in the species composition within the cultures, so that the observed changes in pigment ratio and chlorophyll a content were due to physiological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号