首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.  相似文献   

2.
A modeling study was conducted on dispersion and dry deposition of ammonia taking one hog farm as a unit. The ammonia emissions used in this study were measured under our OPEN (Odor, Pathogens, and Emissions of Nitrogen) project over a waste lagoon and from hog barns. Meteorological data were also collected at the farm site. The actual layout of barns and lagoons on the farms was used to simulate dry deposition downwind of the farm. Dry deposition velocity, dispersion, and dry deposition of ammonia were studied over different seasons and under different stability conditions using the short-range dispersion/air quality model, AERMOD. Dry deposition velocities were highest under near-neutral conditions and lowest under stable conditions. The highest deposition at short range occurred under nighttime stable conditions and the lowest occurred during daytime unstable conditions. Significant differences in deposition over crop and grass surfaces were observed under stable conditions.  相似文献   

3.
ABSTRACT

To obtain annual odor emission profiles from intensive swine operations, odor concentrations and emission rates were measured monthly from swine nursery, farrowing, and gestation rooms for a year. Large annual variations in odor concentrations and emissions were found in all the rooms and the impact of the seasonal factor (month) was significant (P < 0.05). Odor concentration was low in summer when ventilation rate was high but high in winter when ventilation rate was low, ranging from 362 (farrowing room in July) to 8934 (nursery room in December) olfactory unit (OU) m?3. This indicates that the air quality regarding odor was significantly better in summer than that in winter. Odor emission rate did not show obvious seasonal pattern as odor concentration did, ranging from 2 (gestation room in November) to 90 (nursery room in April) OU m?2 sec?1; this explains why the odor complaints for swine barns have occurred all year round. The annual geometric mean odor concentration and emission rate of the nursery room was significantly higher than the other rooms (P < 0.05). In order to obtain the representative annual emission rate, measurements have to be taken at least monthly, and then the geometric mean of the monthly values will represent the annual emission rate. Incorporating odor control technologies in the nursery area will be the most efficient in reducing odor emission from the farm considering its emission rate was 2 to 3 times of the other areas. The swine grower-finisher area was the major odor source contributing 53% of odor emission of the farm and should also be targeted for odor control. Relatively positive correlations between odor concentration and both H2S and CO2 concentrations (R 2 = 0.58) means that high level of these two gases might likely indicate high odor concentration in swine barns.

IMPLICATIONS The emissions of air pollutants including odors, greenhouse gases, and toxic gases have become a major environmental issue facing animal farms in the U.S.A. and Canada. To ensure the air quality in the vicinity of intensive livestock farms, air dispersion models have been used to determine setback distances between livestock facilities and neighboring residences based on certain air quality requirement on odor and gases. Due to the limited odor emission data available, none of the existing models can take account of seasonal variations of odor emissions, which may result in great uncertainties in setback distance calculations. Therefore, the obtained seasonal odor and gas emission rates by this study can be used by the government regulatory organizations and researchers in air dispersion modeling to get improved calculation of setback distances.  相似文献   

4.
Portable 24-hr sampling units were used to collect air samples from eight biofilters on four animal feeding operations. The biofilters were located on a dairy, a swine nursery, and two swine finishing farms. Biofilter media characteristics (age, porosity, density, particle size, water absorption capacity, pressure drop) and ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and nitrous oxide (N2O) reduction efficiencies of the biofilters were assessed. The deep bed biofilters at the dairy farm, which were in use for a few months, had the most porous media and lowest unit pressure drops. The average media porosity and density were 75% and 180 kg/m3, respectively. Reduction efficiencies of H2S and NH3 (biofilter 1: 64% NH3, 76% H2S; biofilter 2: 53% NH3, 85% H2S) were close to those reported for pilot-scale biofilters. No N2O production was measured at the dairy farm. The highest H2S, SO2, NH3, and CH4 reduction efficiencies were measured from a flat-bed biofilter at the swine nursery farm. However, the highest N2O generation (29.2%) was also measured from this biofilter. This flat-bed biofilter media was dense and had the lowest porosity. A garden sprinkler was used to add water to this biofilter, which may have filled media pores and caused N2O production under anaerobic conditions. Concentrations of H2S and NH3 were determined using the portable 24-hr sampling units and compared to ones measured with a semicontinuous gas sampling system at one farm. Flat-bed biofilters at the swine finishing farms also produced low amounts of N2O. The N2O production rate of the newer media (2 years old) with higher porosity was lower than that of older media (3 years old) (P = 0.042).  相似文献   

5.
The animal husbandry industry is a major emitter of ammonia (NH3), which is a precursor of fine particulate matter (PM2.5)--arguably, the number-one environment-related public health threat facing the nation. The industry is also a major emitter of methane (CH4), which is an important greenhouse gas (GHG). We present an integrated process model of the engineering economics of technologies to reduce NH3 and CH4 emissions at dairy operations in California. Three policy options are explored: PM offset credits for NH3 control, GHG offset credits for CH4 control, and expanded net metering policies to provide revenue for the sale of electricity generated from captured methane (CH4) gas. Individually these policies vary substantially in the economic incentives they provide for farm operators to reduce emissions. We report on initial steps to fully develop the integrated process model that will provide guidance for policy-makers.  相似文献   

6.
Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling has required active sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

7.
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO2-eq per t of carcass and 6.83 kg CO2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.  相似文献   

8.
ABSTRACT

Pig production systems in China are shifting from small to industrial scale. Significant variation in housing ammonia (NH3) emissions can exist due to differences in diet, housing design, and management practices. However, there is a knowledge gap regarding the impacts of farm-scale in China, which may be critical in identifying hotspots and mitigation targets. Here, continuous in-situ NH3 concentration measurements were made at pig farms of different scales for sows and fattening pigs over periods of 3–6 days during two different seasons (summer vs. winter). For the sow farms, NH3 emission rates were greater at the small farm (summer: 0.52 g pig?1 hr?1; winter: 0.21 g pig?1 hr?1) than at the large farm (summer: 0.34 g pig?1 hr?1; winter: 0.12 g pig?1 hr?1). For the fattening pig farms, NH3 emission rates were greater at the large farm (summer: 0.22 g pig?1 hr?1; winter: 0.16 g pig?1 hr?1) than at the small farm (summer: 0.19 g pig?1 hr?1; winter: 0.07 g pig?1 hr?1). Regardless of farm scale, the NH3 emission rates measured in summer were greater than those in winter; the NH3 emission rates were greater in the daytime than at the nighttime; a positive relationship (R2 = 0.06–0.68) was established between temperature and NH3 emission rate, whereas a negative relationship (R2 = 0.10–0.47) was found between relative humidity and NH3 emission rate. The effect of farm-scale on indoor NH3 concentration could mostly be explained by the differences in ventilation rates between farms. The diurnal variation in NH3 concentration could be partly explained by ventilation rate (R2 = 0.48–0.78) in the small traditional farms and by emission rate (R2 = 0.26–0.85) in the large industrial farms, except for the large fattening pig farm in summer. Overall, mitigation of NH3 emissions from sow farms should be a top priority in the North China Plain.

Implications: The present study firstly examined the farm-scale effect of ammonia emissions in the North China Plain. Of all farms, the sow farm was identified as the greatest source of ammonia emission. Regardless of farm scale, ammonia emission rates were observed to be higher in summer. Ammonia concentrations were mostly higher in the large industrial farms partly due to lower ventilation rates than in the small traditional farms.  相似文献   

9.
Modelling the spatial distribution of ammonia emissions in the UK   总被引:3,自引:0,他引:3  
Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.  相似文献   

10.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

11.
In order to comply with the ammonia (NH(3)) emission reduction assigned to the Netherlands development of new measures are needed, which should be supported by fast and accurate measurements to arrive at new estimates of the NH(3) emission from each agricultural source. This paper gives an overview of the current methods used in the Netherlands to measure NH(3) emissions from animal houses, and provides alternative methods for some particular situations. For mechanically ventilated animal houses, passive flux samplers placed in the ventilation shafts of the animal house are presented as alternative to measure a larger number of animal houses (replicates) with the same housing system at a low price. For naturally ventilated animal houses, when mixing in the animal house is not good enough to allow measurements within the animal house (internal tracer gas ratio method), two measurement methods are discussed: the Gaussian plume dispersion model, which is usually not suitable for agricultural situations, and the flux frame method, which is not always applicable because of distortion of the flow around the building. Finally, for animal houses with outside yards for the animals, there are at this moment no methods available to measure the NH(3) emissions from these complex situations, although quick box methods (for the outside yards) and a combination of a backward Lagrangian stochastic model with open-path concentration measurements with a tunable diode laser (TDL), look promising.  相似文献   

12.
In the vicinity of a large ammonia emission area, dry and wet deposition of acidifying and eutrophying compounds onto Douglas Fir forests was studied by sampling throughfall, stemflow and bulk precipitation. Deposition amounts of NH(4)(+) and SO(4)(2-) were recognised to be among the highest of Central Europe, resulting in extremely high inputs of (potential) acid to the forest soils (13.1 kEq ha(-1) year(-1)). The contribution of NH(3) emissions from agriculture to the total acid deposition to the forests was 52%. The total nitrogen deposition amounted to 115.0 kg ha(-1) year(-1), 83% originating from NH(3) emissions and 17% from NO(x) emissions. Calculated mean dry deposition velocities of NH(3) and SO(2) were much larger than reported in the literature. A synergistic effect between NH(3) and SO(2) in the process of dry deposition is suggested and evidence for this effect is discussed. When deposition models do not take this interaction into account, they will underestimate NH(3) and SO(2) deposition amounts in areas with intensive animal husbandry.  相似文献   

13.
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.  相似文献   

14.
There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy. A protocol using flux chambers (FCs) was used to determine these NH3 emissions from the open-lot dairy. NH3 concentration measurements were made using chemiluminescence-based analyzers. The ground-level area sources (GLAS) including open lots (cows on earthen corrals), separated solids, primary and secondary lagoons, and milking parlors were sampled to estimate NH3 emissions. The seasonal NH3 EFs were 11.6 +/- 7.1 kg-NH3 yr(-1)head(-1) for the summer and 6.2 +/- 3.7 kg-NH3 yr(-1)head(-1) for the winter season. The estimated annual NH3 EF was 9.4 +/- 5.7 kg-NH3 yr(-1)head(-1) for this open-lot dairy. The estimated NH3 EF for winter was nearly 47% lower than summer EF. Primary and secondary lagoons (approximately 37) and open-lot corrals (approximately 63%) in summer, and open-lot corrals (approximately 95%) in winter were the highest contributors to NH3 emissions for the open-lot dairy. These EF estimates using the FC protocol and real-time analyzer were lower than many previously reported EFs estimated based on nitrogen mass balance and nitrogen content in manure. The difference between the overall emissions from each season was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH3 emission from the open-lot earthen corrals due to variable animal density within feeding and shaded and dry divisions of the open lot. This spatial variability was attributed to dispirit manure loading within these areas.  相似文献   

15.
This paper discusses agriculture's share in the world-wide emissions of climate-affecting gases and in the global warming potential (GWP). Proposals also are presented to reduce these emissions adequately, using a cause-oriented approach. Largely due to the fertilization and cultivation of agriculture as well as the burning of biomass, agriculture has a very high share in the anthropogenic emissions of NH(3), N(2)O, CH(4) and CO at >95%, 81%, 70% and 52%, respectively, while its share in the NO(x) and CO(2) emissions is relatively small at 35% and 21%. The GWP of agriculture, based on annually 16.1 x 10(9) tons of CO(2), approaches 63% of the GWP of the energy sector or 80% of the GWP of its CO(2) emissions. At 34% and 32%, respectively, the main originators in the GWP of agriculture would seem to be CO(2) (changing land use) and CH(4) (animal husbandry/rice cropping/biomass burning) followed at 15% by NO(2) (technical and biological N fixation/(cultivation and recultivation/biomass burning) and 10% and 9% by CO and NO(x). The GWP of 3 German dairy cows corresponds with 13.2 tonnes CO(2) per year the GWP of two average German automobiles. However, the ozone-destroying effect of N(2)O and the climate-relevant effects of NH(3) are not yet included here. As with the therapy for other 'modern' boundary-crossing environmental damages, such as acidification or eutrophication, global climate change therapy likewise needs a therapy for the respective effects of reactive compounds of carbon, nitrogen, phosphorous, and sulfur also emitted by agriculture. Proposals for reducing these emissions within the agricultural sector include need-oriented plant, animal and human nutrition, more efficient external and internal nutrient recycling, the cessation of further clearing by burning, along with intensified afforestation mainly in the tropics, targeted measures to reduce nutrient losses/emissions, and measures for more efficient use of nutrients in plant, animal and human nutrition. These measures would at best result in reduced pollution of the global environment but not put it to an end. Decisive, therefore, is both the tolerable extent of mankind and its long-term sustainable way of life.  相似文献   

16.
A local ammonia (NH3) inventory for a 5x5 km area in central England was developed, to investigate the variability of emissions, deposition and impacts of NH3 at a field scale, as well as to assess the validity of the UK 5-km grid inventory. Input data were available for the study area for 1993 and 1996 on a field by field basis, allowing NH3 emissions to be calculated for each individual field, separately for livestock grazing, livestock housing and manure storage, landspreading of manures and fertiliser N application to crops and grassland. An existing atmospheric transport model was modified and applied to model air concentrations and deposition of NH3 at a fine spatial resolution (50 m grid). From the mapped deposition estimates and land cover information, critical loads and exceedances were derived. to study the implications of local variability for regional NH3 impacts assessments. The results show that the most extreme local variability in NH3 emissions, deposition and impacts is linked to housing and storage losses. However, landspreading of manures and intensive cattle grazing are other important area sources, which vary substantially in the landscape. Overall, the range of predicted emissions from agricultural land within the study area is 0-2000 kg N ha(-1) year(-1) in 1993 and 0-8000 kg N ha(-1) year(-1) in 1996, respectively, with the peak at a poultry farm located in the study area. On average, the estimated field level NH3 emissions over the study area closely match the emission for the equivalent 5-km grid square in the national inventory for 1996. Deposition and expected impacts are highly spatially variable, with the edges of woodland and small "islands" of semi-natural vegetation in intensive agricultural areas being most at risk from enhanced deposition. Conversely the centres of larger nature reserves receive less deposition than average. As a consequence of this local variability it is concluded that national assessments at the 5 km grid level underestimate the occurrence of critical loads exceedances due to NH3 in agricultural landscapes.  相似文献   

17.
Bleken MA  Steinshamn H  Hansen S 《Ambio》2005,34(8):598-606
Intensification of agriculture has been proposed as one way of minimizing emissions per unit of product, apparently legitimizing the ongoing structural changes in agriculture. We have investigated the relationship between the farming intensity and the nitrogen (N) dissipation by calculating the overall N emission factor (E: total N surplus per unit of N in the produce) from several studies of dairy farms, covering a wide range of environments and production intensities. Fundamental steps were (1) the distinction between trophic levels, mineral, plant and animal N; and (2) the inclusion of N losses related to bought feed. The results show that E increases significantly with the production intensity of the dairy farm. The tradition for separate optimization of the animal and crop sectors may be a reason. We suggest that the N pollution can be mitigated by more extensive farming, both by re-coupling crop and animal production side by side, and by keeping land under cultivation when production is reduced.  相似文献   

18.
Managing ammonia emissions from livestock production in Europe   总被引:4,自引:0,他引:4  
Around 75% of European ammonia (NH(3)) emissions come from livestock production. Emissions occur at all stages of manure management: from buildings housing livestock; during manure storage; following manure application to land; and from urine deposited by livestock on pastures during grazing. Ammoniacal nitrogen (total ammoniacal-nitrogen, TAN) in livestock excreta is the main source of NH(3). At each stage of manure management TAN may be lost, mainly as NH(3), and the remainder passed to the next stage. Hence, measures to reduce NH(3) emissions at the various stages of manure management are interdependent, and the accumulative reduction achieved by combinations of measures is not simply additive. This TAN-flow concept enables rapid and easy estimation of the consequences of NH(3) abatement at one stage of manure management (upstream) on NH(3) emissions at later stages (downstream), and gives unbiased assessment of the most cost-effective measures. We conclude that rapid incorporation of manures into arable land is one of the most cost-effective measures to reduce NH(3) emissions, while covering manure stores and applying slurry by band spreader or injection are more cost-effective than measures to reduce emissions from buildings. These measures are likely to rank highly in most European countries.  相似文献   

19.
To obtain annual odor emission profiles from intensive swine operations, odor concentrations and emission rates were measured monthly from swine nursery, farrowing, and gestation rooms for a year. Large annual variations in odor concentrations and emissions were found in all the rooms and the impact of the seasonal factor (month) was significant (P < 0.05). Odor concentration was low in summer when ventilation rate was high but high in winter when ventilation rate was low, ranging from 362 (farrowing room in July) to 8934 (nursery room in December) olfactory unit (OU) m(-3). This indicates that the air quality regarding odor was significantly better in summer than that in winter. Odor emission rate did not show obvious seasonal pattern as odor concentration did, ranging from 2 (gestation room in November) to 90 (nursery room in April) OU m(-2) sec(-1); this explains why the odor complaints for swine barns have occurred all year round. The annual geometric mean odor concentration and emission rate of the nursery room was significantly higher than the other rooms (P < 0.05). In order to obtain the representative annual emission rate, measurements have to be taken at least monthly, and then the geometric mean of the monthly values will represent the annual emission rate. Incorporating odor control technologies in the nursery area will be the most efficient in reducing odor emission from the farm considering its emission rate was 2 to 3 times of the other areas. The swine grower-finisher area was the major odor source contributing 53% of odor emission of the farm and should also be targeted for odor control. Relatively positive correlations between odor concentration and both H2S and CO2 concentrations (R(2) = 0.58) means that high level of these two gases might likely indicate high odor concentration in swine barns.  相似文献   

20.
Volatile organic compounds at swine facilities: A critical review   总被引:3,自引:0,他引:3  
Ni JQ  Robarge WP  Xiao C  Heber AJ 《Chemosphere》2012,89(7):769-788
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号