首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Chemosphere》2009,74(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

2.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

3.

The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N 2-ethyl-N 4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L?1). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R 2 ≥ 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06–0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

4.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

5.
The sorption of 1,2,4-trichlorobenzene and tetrachloroethene was investigated in a series of well-controlled batch experiments, using authigenic soil materials from a profile extending to 2.5 m below ground surface. Batch experiment techniques were verified by study with both pulverized and unpulverized soil at different times of equilibration, using two widely different soil:water ratios, and at a wide range of aqueous concentration. Sorption isotherms were approximately linear, with sorption distribution coefficients (Kd) found to decrease roughly 100-fold down the soil profile. Kd decreased with depth to an extent greater than could be predicted on the basis of the only 10-fold decrease in natural solid organic matter (SOM) content and despite significantly higher specific surface area in the lower horizons. All base-extractable SOM in these deeper soil horizons was operationally defined as fulvic acid (FA), although there was also a significant fraction that was not extracted by the standard base technique. The lower Kd of the deeper soil horizons is believed to reflect a complex combination of (1) lower SOM content; (2) a more hydrophilic form of SOM; and (3) a more intimate association of the SOM with the mineral fraction, affecting its accessibility, sorptivity, or both. For the deeper horizons, an increase in overall Kd by more than 4-fold was observed on solids treated by either base extraction or H2O2 treatment, demonstrating that sorption to remaining soil components could be dramatically increased by fractional SOM removal and/or chemical alteration of the soil. A simple regression model that divides SOM into only two types (shallow and deep SOM) provides a reasonably good explanation of sorption in all seven horizons and suggests an order-of-magnitude variability in Koc among surface soil and deeper horizons.  相似文献   

6.
A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot.  相似文献   

7.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

8.
This research evaluated the effects of the new sugarcane harvesting system (without straw burning) and soil attributes on the organic carbon (OC) accumulation and sorption of alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in highly weathered Brazilian soils. Alachlor was more likely to leach (K d,app = 1.0–7.0 L kg?1 and mean K oc,app = 174 L kg?1) than diuron (K d,app = 6.2–116.3 L kg?1 and mean K oc,app = 1789 L kg?1). The sorption coefficient (K d,app) values correlated better with soil OC contents, but the Fe-oxides also played an important role in these highly weathered soils. Sorption was enhanced in the areas without straw burning mostly due to OC accumulation that was higher in the clayey soils, but it was not enough to change their mobility classification.  相似文献   

9.
Previous studies have shown the high sorption affinity of polycyclic aromatic hydrocarbons by cork. The aim of the present work is to go further by investigating the sorption mechanism of polycyclic aromatic hydrocarbons (exemplified by phenanthrene) on cork and the availability of the chemical components (i.e. lignin, suberin, holocellulose and extractives) to retain phenanthrene.Two approaches were integrated to reach this objective: (1) statistical multivariate analysis to obtain correlations between the sorption capacity, measured as Koc, and the sorbent properties (i.e. polarity, acidic functional groups, %dichloromethane extractives, %ethanol and water extractives, %suberin, %lignin and %holocellulose) and (2) modeling calculations to obtain information on interaction at the molecular level.The statistical multivariate analysis demonstrated a strong and positive correlation between Koc and the lignin content as well as negative correlations between Koc and the phenolic groups and %dichloromethane extractives contents. The modeling study showed that the lignin–phenanthrene interaction is mostly hydrophobic in nature being largely determined by the π-stacking interaction between the aromatic groups of the interacting partners. This result justifies the observed correlations as dichloromethane extractives, being hydrophobic, compete with phenanthrene adsorption, whereas phenolic groups, as well as negatively charged groups, enhance the hydrophilic character of the sorbent surface, thus hindering the adsorption of phenanthrene.  相似文献   

10.
11.
To better understand interaction mechanisms of pine needles with persistent organic pollutants, single-solute and bi-solute sorption of phenanthrene and pyrene onto isolated cuticular fractions of pine needle were investigated. The structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy and solid-state 13C NMR. Polymeric lipids (cutin and cutan) exhibited notably higher sorption capabilities than the soluble lipids (waxes), while cellulose showed little affinity with sorbates. With the coexistence of the amorphous cellulose, the sorption of cutan (aromatic core) was completely inhibited, so the cutin components (nonpolar aliphatic moieties) dominated the sorption of bulk needle cuticle. By the consumption of the amorphous cellulose under acid hydrolysis, sorption capacities of the de-sugared fractions were dramatically enhanced, which controlled by the exposed aromatic cores and the aliphatic moieties. Furthermore, the de-sugared fractions demonstrated nonlinear and competitive sorption due to the specific interaction between aromatic cores and polycyclic aromatic hydrocarbon.  相似文献   

12.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

13.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   

14.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

15.
Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles.  相似文献   

16.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

17.
Properties related to sorption and transport of organic compounds have been determined on 126 sections of 17 cores taken in an aquifer at Columbus Air Force Base in Columbus, MS. Each core section was homogenized prior to analysis. Organic carbon content (OC), specific surface area (SA), distribution coefficient (Kd) for naphthalene, and particle size distribution were measured on each section. Hydraulic conductivity (Kh) for each section was calculated from the particle size distributions. Kh values obtained were comparable with those from earlier borehole flowmeter and pulse tracer tests. Frequency distributions for all properties were lognormal. The arithmetic means and standard deviations for all samples are: OC=0.028% (+0.031, −0.015), SA=4.02 m2/g (+3.95, −1.99), Kd=0.198 l/kg (+0.195, −0.098), Kh=0.00033 m/s (+0.00051, −0.00020). These standard deviations are asymmetrical about the mean because statistics were calculated using log-transformed data, and antilogarithms then taken to obtain the results in the units of property measurement. Variabilities, expressed as coefficients of variation, were similar for all properties. Correlations between the properties were investigated. A good correlation between naphthalene Kd and OC (r=0.78) was found, and other correlations were weak, thus indicating that organic carbon content may control sorption of nonpolar organic solutes in this low carbon aquifer. Autocorrelation (variogram) analysis indicated that, for all properties, correlation lengths were less than the distance between sample points, which were separated by about 20 m horizontally and 1 m vertically. Separate statistical analysis of two widely separated groups of wells showed the groups similar in all properties, except organic carbon. Large-scale inhomogeneity was not detected, although earlier tracer tests produced irregular plumes indicating inhomogeneity in observed solute transport. Implications of the results to site characterization, in situations where aquifers are heterogeneous on short length scales, are discussed.  相似文献   

18.
Displacement of lindane presorbed on the pristine and OH-functionalized multiwalled carbon nanotubes (MWCNTs) by phenanthrene, naphthalene, and atrazine, and competition of these compounds with lindane on the aforementioned sorbents were investigated. Displacement of lindane presorbed on MWCNTs by atrazine, naphthalene, and phenanthrene, and competitive sorption effect of these chemicals with lindane on MWCNTs followed the same order: atrazine > naphthalene > phenanthrene. The lowest competition and displacement of lindane by phenanthrene were mainly because of the strong interactions between these two chemicals, whereas interaction of lindane with atrazine and naphthalene was quite low. The more pronounced displacement of lindane by atrazine than naphthalene and higher competitive sorption of lindane with atrazine than with naphthalene can be ascribed to the larger molecular volume of atrazine; thus, the steric hindrance effect is higher relative to naphthalene. This study is valuable for evaluating influence of the coexisting organic compounds on sorption of primary solute towards MWCNTs in the environment.  相似文献   

19.
Abstract

Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0–20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34–42 and 71–79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

20.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号