首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>2011年,全国交通排放的氮氧化物占氮氧化物总量的25%以上,且珠三角和京津冀地区交通相关的PM2.5均占所在区域PM2.5的1/4。机动车尾气已成为城市空气污染的主要来源。而由其引发的灰霾(以PM2.5污染为主)、光化学烟雾(以O_3污染为主)等复合型大气污染也日益严重。佛山市的机动车保有量在过去近十年保持了高速增长。2004年佛山机动车约为162万辆,而2013年达到约220万辆,增长超过了三成。其中,汽车增长了近100万辆。2013年10月广东省环保厅发布的珠三  相似文献   

2.
为了研究唐山市PM2.5理化特征及来源,分别于2012年7月和2013年1月对唐山市夏、冬季PM2.5样品进行了采集,应用电感耦合等离子体质谱仪(ICP-MS)、离子色谱仪(IC)和DRI碳质分析仪对PM2.5样品中化学组分元素、水溶性离子及有机碳和元素碳(OC/EC)进行了分析。应用CAMx-PSAT数值模型对采样时段PM2.5进行模拟,分析了夏、冬季PM2.5的主要来源。结果表明,唐山市PM2.5污染严重,夏、冬季质量浓度分别为国家环境II级标准的1.08倍和2.49倍。夏季PM2.5中二次组分质量浓度较高,占PM2.5总质量浓度的53.56%。SO2-4、NO-3和NH+4是PM2.5中重要的二次组分,占PM2.5质量浓度的31.49%~43.79%。一次组分中,矿物尘和POA占PM2.5质量浓度比例最高。唐山夏冬季节PM2.5未知组分比例分别为14.4%和24.86%。工业源是唐山市PM2.5污染的主要来源,夏、冬季节贡献率分别为74.1%和43.8%。由于居民燃煤采暖,冬季居民源对唐山市PM2.5贡献率增大。冬季唐山市主导风向为西北,外来源对PM2.5贡献率为31.2%;夏季主导风向为东南,外来源贡献率为15.0%。气象因素是导致外来源贡献季节变化的重要原因。  相似文献   

3.
北京典型污染过程PM2.5的特性和来源   总被引:2,自引:0,他引:2  
通过采集北京2010年12月—2011年3月冬春季节大气细颗粒物PM2.5样品,分析了冬春季典型污染时段灰霾和沙尘期间大气细颗粒物PM2.5的质量浓度和其中元素、水溶性离子、有机组分OC和EC特性,及其季节变化和来源.结果表明,北京灰霾和沙尘期间PM2.5日均质量浓度分别高达301.8 μg/m3和284.8 μg/m3,是美国EPA PM2.5日均质量浓度限值(35 μg/m3)的8.62倍和8.14倍.灰霾时段,人为污染元素(S、Cu、Zn、As、Se、Cd、Sb、Pb)、二次无机离子(NH4+、NO3-、SO42-)和二次有机碳(SOC)的质量浓度均高于沙尘天气和非污染天气.沙尘天气时地壳元素(Na、Mg、Al、Ca、Fe等)的质量浓度高于灰霾天气和非污染天气.北京冬春季节PM2.5主要来源于燃煤和工业过程、二次转化、地面扬尘、机动车尾气和生物质燃烧.灰霾污染时段二次转化贡献率较高,沙尘污染时段地面扬尘贡献率较高.  相似文献   

4.
PM2.5作为对人体健康危害最严重的大气污染物之一,其科学研究备受关注。介绍了国外在PM2.5防治上的有效经验以及国内目前防治PM2.5所开展的工作,提出了两种治理PM2.5的新技术,为研究制定符合我国国情的防治PM2.5污染和改善空气质量的措施提供理论依据。  相似文献   

5.
<正>进入2014年,随着城市人口和机动车数量的日益增多,城市环境污染越来越严重,尤其空气污染和噪声污染。随着人民环保意识的提高,降低城市环境污染的呼声越来越高。电动车以其具有低噪声、无尾气污染的优点,正成为解决城市环境污染的工具,为众多城市交通的首选。中国许多城市环境空气的PM10、PM2.5以及二氧化氮浓度逐年增高、噪音污染日趋加重,城市环境污染防治形势十分严峻。陕西榆林市地处陕西省北部,东邻山西省、北接内蒙古、西  相似文献   

6.
佛山禅城区机动车尾气排放特征及分布   总被引:1,自引:0,他引:1  
通过对禅城区不同道路类型交通流进行调查分析,运用COPERT模式计算出2008年佛山地区机动车排放因子,分析出禅城区机动车尾气排放的主要来源及主要特征,得到了禅城区机动车尾气排放总量及排放分担率.根据佛山市辖区区间出行车辆较多的特点,采用源强估算总量的方法计算区内机动车污染排放.结果表明,禅城区2008年CO、NOx、VOC、PM的排放量分别为72 356.86 t、7 288.38 t、9 991.68 t和366.80 t.不同车型对不同污染物的排放贡献率差别明显,尤以摩托车的CO、VOC排放贡献较高,分别占机动车排放污染物总量的85%和77%.道路局部污染最严重的道路类型为国道,整体污染最为严重的为主干路.区内机动车劣化严重,占机动车总量37%的国0车的CO、NOx、VOC、PM排放分担率分别占机动车排放总量的68%、45%、58%、63%.不同车型、不同排放标准的排放因子存在较大差别,轻型车的CO、VOC较高而重型车的NOx、PM排放因子较高.  相似文献   

7.
<正>随着我国经济的不断发展,城市化建设日益壮大,随之产生的建筑业也得到了蓬勃发展。面对如此快速的城市建设速度,对处理建筑扬尘污染又有了新的挑战。本文主要简单地介绍了PM2.5及建筑扬尘的相关概念,分析了建筑扬尘的排放源种类,并以某市的具体监测数据来说明建筑扬尘对城市空气中PM2.5浓度的影响情况,结果表明城市建设中建筑扬尘对城市环境中PM2.5浓度的影响较大。这在今后为建筑扬尘污染的治理提供了  相似文献   

8.
<正>前言随着我国环境污染的日益严重,PM2.5也引起了人们的高度重视,尤其是以我国北京为首的北方城市,最近几年饱受PM2.5的"催残",受PM2.5的影响,我国北方很多城市长年累月看不到湛蓝的天空,整天生活在灰暗、阴霾的天空之下,就连部分南方城市,也因为工业化进程的加快,导致PM2.5严重超标。这种形势下,PM2.5这一词也成了人们常常提起的关于空气污染的代名词。PM2.5又被称作细颗粒物,主要是指环境空气中空气动力  相似文献   

9.
<正>引言当前城市高楼林立,由此形成了许多峡谷型街道。与此同时,在城市中随着机动车辆持续增长,机动车尾气已成为城市空气的主要污染物。机动车尾气中含有上百种化合物,主要的有害污染物包括CO、CH_x、NO_x、PM2.5、PM10。这样一来,机动车排放的大量有害污染物在街道峡谷内积聚,扩散不出去,严重影响着  相似文献   

10.
<正>11月29日夜,呼和浩特雾霾锁城,晚间至次日凌晨空气污染最为严重。市内部分环境监测点污染数据显示:空气质量指数AQI为500;细颗粒物PM2.5指数峰值为655,属严重污染级别。(中新网)  相似文献   

11.
<正>11月7日开始,辽宁省除丹东、朝阳、葫芦岛外,其余11个城市达到重度污染以上。其中,营口、鞍山、沈阳、盘锦、铁岭、辽阳6市达到严重污染(AQI超过300),首要污染物为PM2.5。据新华社报道,8日,沈阳市遭遇六级严重雾霾污染,全市PM2.5均值一度达到1155微克/立方米,局地甚至一度突破1400微克/立方米。新华社记者在沈阳市内街头采访看到,城区被灰白色的烟霾笼罩,能见度不足百米。车辆行驶缓慢,行人大都佩戴口罩,行色匆匆。  相似文献   

12.
对杭州经济技术开发区7个不同监测点PM2.5质量浓度进行了为期8天的监测,研究了PM2.5浓度的时空分布特征,及其与气象条件的关系。监测数据显示,监测期间,开发区PM2.5超标率为50%~62.5%,污染程度严重。文教区、居住区、工业区及钱塘江边的PM2.5日均浓度平均值分别为110μg/m3、95μg/m3、97μg/m3和94μg/m3。气象分析表明,PM2.5浓度水平与风力、温度大小呈负相关,与湿度没有明显相关性。  相似文献   

13.
PM2.5与O3均为导致城市环境空气质量恶化的主要污染物,采用自动设备监测湖南省长沙、株洲、湘潭3市商业区和郊区空气中的PM2.5和O3质量浓度,并对数据进行相关性分析.结果表明:PM2.5和O3质量浓度的季节性变化大,其中O3质量浓度夏、秋2季高,春、冬2季低;PM2.5则秋、冬2季高,春、夏2季低;O3质量浓度峰值一般出现在当天午后,PM2.5质量浓度峰值一般出现在上午;空间分布上,O3质量浓度在郊区站点相对较高,而PM2.5质量浓度在商业区站点较高.PM2.5与O3质量浓度变化以负相关为主,即PM2.5质量浓度高时,O3质量浓度则低,反之亦然,二者一般不产生叠加污染.总体上,夏、秋季节应主要防O3污染,春、冬季节则主要防PM25污染.  相似文献   

14.
北京市城市街区PM10浓度日变化特征及其影响因子   总被引:3,自引:0,他引:3  
为了解北京城市街区PM10浓度日变化特征及其影响因素,利用2003年10月BECAPEX(Beijing City Air Pollution Experiment)街道、街区及周边小区4个测点PM10浓度的对比观测试验资料和同期街道机动车流量、采样点附近自动气象站风速及探空资料进行了综合对比分析.通过天气诊断和统计学分析相结合,初步分析了北京市城区街道大气污染物PM10浓度日变化特征及机动车排放污染、气象条件对PM10浓度日变化的影响.结果表明,试验期间北京市城区街道PM10浓度日变化特征存在明显差异,交通源污染物PM10浓度日变化具有单峰与双峰型差异的特殊性.工作日PM10浓度日变化出现双峰,周末PM10浓度日变化仅有单峰出现; 交通污染源和气象条件对城市街区PM10浓度日变化特征的影响程度存在空间差异.离交通污染源较近的街区PM10浓度日变化受机动车排放污染的影响程度较大,而离交通源较远的小区PM10浓度受机动车排放污染的影响相对较小; 不稳定天气条件下交通污染源影响范围较小,在特定天气条件下,气象条件的影响强度可显著超过交通污染源的影响.  相似文献   

15.
<正>引言本文利用2012年和2013年华侨城和南油两个国控点PM2.5的监测数据,分析了南山区PM2.5的时间变化特征,得出了一些结论,对区域治理PM2.5的污染有指导意义。PM2.5是指空气动力学直径小于或等于和2.5μm的颗粒物,PM2.5也称为可入肺颗粒物。它对空气质量和能见度有重要影响,易产生灰霾天气。人体的生理结构决定了对PM2.5没有任何过滤、阻拦能力。世界卫生组织在2005年版《空气质量  相似文献   

16.
《环境影响评价》2018,(6):103-103
近年来,随着一系列大气污染防治政策和行动的实施,我国大气污染特征已从煤烟型污染转变成为以PM2.5和O3为代表的复合型污染。挥发性有机物(VOCs)作为促进O3和PM2.5,二次颗粒物形成的重要前体物,逐渐成为国家管控防治的重点。  相似文献   

17.
根据北京市环境保护监测中心发布的PM2.5和O3小时质量浓度及气象、卫星遥感数据,分析了2013年7月2日至10日北京典型PM2.5及O3重污染过程的质量浓度特征及在大气边界层过程各个阶段的质量浓度演变.结果表明,北京夏季O3质量浓度先于PM2.5达到峰值,而天气型演变是导致这一现象的主要原因.具体过程为:1)重污染初始阶段,高压天气型利于前体物积累,PM2.5及O3质量浓度升高;2)在反气旋中部,由于各种污染物质量浓度较低,对大气紫外波段辐射的吸收较弱,导致该阶段紫外辐射强,因而加快了O3生成的光化学反应,O3质量浓度最先达到峰值;3)在反气旋后部,随PM2.5质量浓度增加,辐射变弱,因此O3质量浓度增加速度下降,而受高压后部影响,区域内PM2.5经东南风输送通道进入北京,导致北京PM2.5质量浓度相继达到峰值;4)在重污染清除阶段,在北方反气旋前部的冷锋清除作用下,PM2.5及O3质量浓度同时降低至谷值.  相似文献   

18.
能源燃烧产物是PM2.5暴露水平提高的重要因素,燃烧不同种类的能源对PM2.5形成的影响机理不同,但各类能源消耗量对人群PM2.5暴露水平的影响程度尚不明确.基于2003-2010年的PM2.5质量浓度与煤炭、焦炭、原油、汽油、煤油、柴油、燃料油、天然气和电力消耗数据组成的面板数据,建立了不同种类能源消耗影响我国人群PM25暴露水平的随机效应模型.结果表明,我国2003-2010年多数省(市、自治区)的年均PM2.5质量浓度超过了世界卫生组织的标准.在研究时间段内,不同种类能源消耗量对人群PM2.5暴露水平的影响具有较大差异,煤炭、焦炭、汽油和煤油消耗对人群PM2.5暴露水平具有正影响,其中,正向影响最大的为焦炭消耗量,表明工业消耗焦炭对形成PM2.5的促进作用比较明显;与焦炭消耗量具有相近的影响效果的因素是汽油消耗,表明改进机动车和航空燃油技术同样非常重要;原油、柴油、燃料油、天然气和电力消耗对人群PM2.5暴露水平具有负影响,其中负向影响最大的为电力消耗量,表明电力作为一种清洁能源,有利于降低人群PM2.5暴露水平.  相似文献   

19.
结合我国目前面临的PM2.5污染严重问题,采用CMAQ 4.7.1模式模拟我国东部各省PM2.5浓度分布,并探索了其输送、沉降规律.结果表明:综合空气质量模式CMAQ模拟结果与观测结果较为一致,可以较好地模拟PM2.5质量浓度变化特征;我国东部PM2.5呈现明显的季节分布特征,且PM2.5质量浓度分布与污染源的位置分布有较好的对应,呈现由城市边缘向城市中心推移递增的趋势,区域性PM25高值中心可达120 μg/m3以上;湿沉降是细颗粒物的主要去除方式,且湿沉降量至少为干沉降量5倍以上;PM2.5夏季沉降通量最大,冬季最小,我国东部地区沉降通量高值中心可达30 mg/(m2·d)以上;模拟区域湿沉降量占总沉降量的91%以上,模拟计算区域的总沉降量为4.67×106 t/a,其中京津冀地区细颗粒物总沉降量为1.65 × 106 t/a.  相似文献   

20.
对长沙市冬季某商场建筑室内餐饮区、化妆品区、鞋包区、服饰区和室外同步进行了细颗粒物(PM2.5)质量浓度的实测.分析了室内不同功能区、室外PM2.5质量浓度随时间的变化特征,并分析了温度、相对湿度、风速、大气压力对PM2.5质量浓度的影响.结果表明:室外PM2.5质量浓度高于室内;室内餐饮区PM2.5质量浓度最高,其次是化妆品区和服装区,鞋包区最低;室内人为活动和室外污染共同影响着室内颗粒物质量浓度;风速与PM2.5质量浓度相关性较弱,温度、相对湿度、大气压力与PM2.5质量浓度具有较强的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号