首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对筒形件强力旋压时坯料与旋轮的实际接触情况,建立了坯料与旋轮表面的几何方程,给出了筒形坯料与旋轮接触区轮廓的数值求解过程,为正确计算接触区域轮廓提供了精确的计算方法.  相似文献   

2.
目的对锡铋合金表面粗糙度特征进行研究分析,提高表面加工质量。方法采用正交试验设计方法,以最小表面粗糙度作为优化指标,以主轴转速、铣削深度、进给速度、铣削宽度作为影响因素,进行精密铣削试验研究。结果利用方差分析确定了进给速度是锡铋合金铣削表面粗糙度最重要的影响因素,并基于田口方法优化分析得到了锡铋合金铣削加工工艺最优组合。结论采用田口法对锡铋合金铣削工艺参数优化,有效地减少了加工表面粗糙度,提高了工件表面质量。  相似文献   

3.
电子束物理气相沉积制备热障涂层研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了电子束物理气相沉积设备的主要组成、工作原理和电子束物理气相沉积热障涂层的结构特点,并重点论述了工件转速、工件温度、靶材蒸汽入射角度、工件表面的粗糙度、粘结层预氧化、改性粘结层和双层陶瓷层等对电子束物理气相沉积热障涂层性能的影响。  相似文献   

4.
十二烷基硫酸钠和Triton X-100淋洗菲污染砂土研究   总被引:3,自引:1,他引:2  
比较研究了阴离子表面活性剂十二烷基硫酸钠(SDS)、非离子表面活性剂辛基酚聚氧乙烯醚Triton X-100(TX100)及其混合表面活性剂(SDS-TX100)对菲污染砂土的柱淋洗作用.表面活性剂质量浓度为1000、1750、2500和3250mg·L-1,混合表面活性剂的质量配比SDS∶TX100(S∶T)分别为1∶1、1∶2和1∶4.结果表明,单一SDS对土柱中菲的淋洗曲线规律不明显,呈锯齿状波动;TX100和SDS-TX100对土柱中菲淋洗规律明显,随淋洗液孔隙体积数增大,淋洗液中菲浓度呈先增大,达到峰值,然后逐渐降低的趋势,且随表面活性剂浓度的增大,淋洗液中菲浓度峰值增大,所需淋洗液的累积孔隙体积数减小.在淋洗液累积孔隙体积数相同时,同种表面活性剂对菲的去除率与表面活性剂浓度呈正相关;TX100和SDS-TX100对土柱中菲的去除效果与表面活性剂浓度和配比有关,且均远远大于SDS.当表面活性剂浓度为1000、1750和2500mg·L-1时,TX100和SDS-TX100对菲的累积去除率均可达95%以上,但SDS-TX100所需的累积孔隙体积数小于TX100;当表面活性剂浓度为3250mg·L-1时,5种表面活性剂(SDS、TX100、S∶T=1∶1、S∶T=1∶2和S∶T=1∶4)对菲的累积去除率均达到最大,分别为70.8%、99.9%、99.9%、98.7%和99.2%,而TX100所需的累积孔隙体积数最小.在表面活性剂淋洗修复有机污染土壤时,表面活性剂种类、浓度和配比等因素对修复效果影响显著.  相似文献   

5.
对杯形件单道次拉深旋压成形过程进行了分析,重点讨论了具有两个圆弧工作面的旋轮形状对成形过程的影响.研究结果表明,不同的旋轮形状不仅改变了旋压力p的大小,并且由于其对厚度应变ε的分布影响较大而造成整个旋压过程变形特征的改变,从而导致在工件的不同部位产生破裂.  相似文献   

6.
目的探索2A12铝合金在EXCO溶液中腐蚀损伤形貌的演化规律。方法开展实验室内2A12铝合金的加速腐蚀实验。为实现表面粗糙度与腐蚀损伤相关性的定量研究,首先采用3D扫描成像仪对实验样品进行扫描,取得样品微观几何特征,实现表面粗糙度值的数字化定量表征。观察样品在EXCO溶液中腐蚀损伤的发生发展过程、腐蚀形貌的演化过程,测量腐蚀样品蚀坑深度,并分析表面粗糙度对样品腐蚀损伤的影响。结果当腐蚀时间不超过6 h时,2A12铝合金样品在EXCO溶液中的腐蚀类型主要为点蚀,随着时间的延长,将向全面腐蚀发展。粗糙度值高的试件表面有打磨时形成的较深表面纹理,这些纹理制约了点蚀坑的扩展,使蚀坑沿纹理的方向发展,有演化为微裂纹的可能性,蚀坑边界的不规则处也会萌生微裂纹。粗糙度值较小的样品,腐蚀损伤也较小,但粗糙度对腐蚀损伤的影响随时间的延长而减弱。结论常温下,2A12铝合金在EXCO溶液中首先发生点蚀,由于蚀坑向四周扩展的速度快于深度方向,使腐蚀类型从点蚀向全面腐蚀演变。表面粗糙度对2A12铝合金样品腐蚀损伤形貌的演化有重要影响,表面微观几何特征通过制约蚀坑扩展方向的方式来改变样品的腐蚀行为,并造成腐蚀损伤的明显差异。随着腐蚀时间的延长,材料逐渐失去其原有表面微观几何特征,表面粗糙度对腐蚀行为的影响下降。  相似文献   

7.
对三维非轴对称旋压成形用旋轮组的结构进行了分析,着重分析了旋轮形状与被加工零件的斜面角度和旋轮形状与轴承受力情况之间的关系,在此基础上设计出具有最佳承载能力和寿命的旋轮组结构。  相似文献   

8.
张凯  杨仕超  罗敏  吴延恒  于素英 《环境工程》2020,38(1):60-64,74
合成了1种新型分子结构的bola型表面活性剂,并以其为模板,以正硅酸乙酯、偏铝酸钠为硅源和铝源,按n(NaOH)∶n(NaAlO2)∶n(SiO2)∶n(SDA)∶n(H2O)为30∶2.5∶120∶5∶4800进行配比,采用水热法制备出具有纳米片层结构的ZSM-5分子筛(H-ZSM-5)。采用扫描电镜、透射电镜、X射线和N2吸脱附等技术表征所制备的片层ZSM-5分子筛。对传统ZSM-5、H-ZSM-5进行了甲醛分子静态吸附实验,发现H-ZSM-5分子筛静态吸附量显著高于传统微孔ZSM-5。采用较大分子直径的甲苯蒸汽分子评价吸附性能发现,纳米片层状H-ZSM-5分子筛具备吸附较大分子直径VOCs的能力,可以用于室内较大分子VOCs的净化去除。  相似文献   

9.
我国对塑料制品的表面粗糙度还没有制定标准。世界上许多国家都只有协会的标准。而且,塑料模具型腔表面的粗糙度也没有统一标准。但在工厂里,当设计模具图纸时,必须将每个表面都注明表面粗糙度。多年来,我们实际做法如下: 1.满足塑料制品的使用要求。例如,  相似文献   

10.
目的 建立统一的飞行器隔热材料性能测试标准。方法 利用数值方法对飞行器隔热瓦1 200℃热环境性能测试中的传热模型进行计算。设计3种不同热导率和表面粗糙度的绝热材料隔热性能对比试验。在考虑接触面间凹凸点完全接触导热、接触间隙介质导热和相邻界面辐射传热联合作用时,能够获得与实测数据基本一致的计算结果。结果 试验证明,接触热阻是导致实测数据与理想传热结果相悖的主要原因。获得了接触热阻条件下热扩散系数随传热过程的变化关系,定量得到了相同测试条件下给定的3种不同热导率与粗糙度底部绝热材料对隔热性能测试结果的影响。结论 测试结果存在较大偏差的主要原因是表面粗糙度所致,两接触面在高温条件下更有利于热流传播。研究结果可为飞行器热防护系统设计与性能考核试验方案的确定提供重要参考依据。  相似文献   

11.
目的研究不同表面状态对硅烷环氧杂化树脂涂层/2024铝合金间附着力影响规律。方法结合硅烷环氧杂化树脂涂层的综合性能与实际应用情况,选取4种常见的预处理方式来改变基体表面状态,采用拉拔测试仪测试不同基体表面状态(基体表面p H值、基体表面粗糙度、基体表面能),涂层/基体间的附着力值,研究基体表面状态对该涂层/基体间附着力的影响关系。结果基体表面状体影响涂层附着力的根本原因是基体表面能、基体表面p H值和基体表面粗糙度。结论对于硅烷环氧杂化树脂涂层,其表面处理方式可用热碱清洗方法代替传统铬酸盐钝化;当硅烷环氧杂化树脂涂层喷涂厚度为30μm时,将铝合金基体表面粗糙度控制在Ra=4.75μm左右,可保证涂层有好的附着性,附着力值为8.84 MPa。  相似文献   

12.
通过共培养的方法,研究了塔玛亚历山大藻(Alexandrium tamarense)和小新月菱形藻(Nitzschia closteriumEhr)种群竞争关系对CO2加富的响应变化。培养体系中CO2的浓度分别保持在360μL/L(未加富)和5 000μL/L(CO2加富)。结果表明:(1)不同的初始接种密度对2种藻种群竞争有明显的影响。当塔玛亚历山大藻(A)和小新月菱形藻(N)的初始接种密度比为A∶N=1∶4时,小新月菱形藻在竞争中占有极为明显的优势;当接种比例为A∶N=1∶1,小新月菱形藻占有一定的竞争优势;当接种比例为A∶N=4∶1时,塔玛亚历山大藻在竞争中占有明显优势。(2)CO2加富可改变2种藻种群竞争的关系,使塔玛亚历山大藻竞争能力大大提高,小新月菱形藻种群竞争能力降低,从而导致接种比例A:N=1:4时,塔玛亚历山大藻的竞争劣势不再明显;而接种比例为A:N=1:1和4:1时,塔玛亚历山大藻成为竞争中的优势种。  相似文献   

13.
甲醇是最重要的化工原料之一,被认为是可替代化石燃料的新能源,但作为危险化学品的一员,其安全与环境问题不容忽视。以甲醇储罐泄漏后毒气扩散所造成的中毒事故为研究对象,基于重气扩散(DEGADIS)模型,采用ALOHA软件对甲醇储罐泄漏后毒气扩散范围的影响因素(环境和工艺过程参数)进行了敏感性分析。结果表明:甲醇有毒蒸气云的最大扩散距离会随着大气温度、储罐温度和储罐泄漏口直径的增加而增大,随着风速、大地表面粗糙度和大气相对湿度的增加而减小。其中,大气温度、风速、大地表面粗糙度和储罐泄漏口直径对毒气的最大扩散距离具有重要影响,大气相对湿度和储罐温度则次之,而储罐的充填率和储罐泄漏口高度对毒气的最大扩散距离几乎无影响。  相似文献   

14.
石油污染土壤生物修复的最佳生态条件研究   总被引:11,自引:2,他引:9  
通过正交试验得出了生物修复的最佳降解生态条件。结果表明 :微生物的数量是影响石油降解效率的重要因素 ;石油浓度在一定范围内对石油的降解效率并没有影响 ;石油污染土壤生物修复的最佳生态条件为营养物质C∶N =60 ,电子受体H2 O2 的累计加入量为 1 2mg/ g ,含水量为 50 % ,表面活性剂为阴离子表面活性剂十二烷基苯磺酸钠 ;因素的主次关系排列为含水量、表面活性剂、营养物质和电子受体。  相似文献   

15.
本文用上限法对筒形件强力旋压工艺中的旋轮工作角α进行了分析,提出了理论的最佳旋轮工作角值α_(opt)。它与实验值是相吻合的。有劝于指导旋轮工作角α的设计和进行旋压过程中不稳定变形状态的分析,并叙述了应用实例。目前,筒形件强力旋压工艺在旋轮工作角α的选择时。还是凭经验或在工艺试验中尝试的方法来确定。因此,本文用上限法对旋轮工作角α作初步的分析研究。  相似文献   

16.
采用批量平衡振荡法研究了几种阴离子和非离子表面活性剂在单一使用和混合使用条件下对苊污染黑土的洗脱作用及影响因素。结果表明:4种表面活性剂对苊洗脱率的大小顺序为SDBS>SDS>Triton X-100>Tween40,且浓度越大,洗脱效果越好。将SDBS和Triton X-100按一定质量比例混合后可大幅度提高苊的洗脱率,不同质量比的苊洗脱率大小顺序为1∶9>1∶3>9∶1>1∶1>3∶1。水土比为20∶1的条件下,SDBS对苊污染黑土洗脱能力最高,15∶1时次之,10∶1时最低。NaCl和MgCl_2在低浓度条件下即可大幅度降低SDBS对黑土中苊的洗脱率。菲-苊混合污染土壤中,菲的存在使表面活性剂对苊的洗脱率下降。  相似文献   

17.
表面活性剂增效洗脱修复技术被广泛应用于土壤修复. 本文选取11种非离子型和3种离子型表面活性剂对多环芳烃(PAHs,菲、芘、苯并[a]芘)污染土壤进行洗脱研究,筛选出洗脱效果较好的表面活性剂,并深入探索表面活性剂浓度、洗脱时间、固液比等因素以及表面活性剂的复配对土壤PAHs增效洗脱的影响,旨在比选出一种高效洗脱土壤PAHs的表面活性剂并对其洗脱方法进行优化. 结果表明:①表面活性剂浓度为10 g/L、固液比为1∶20条件下,聚氧乙烯醚-10(NSF10)的去除率最高,达到78%;其次为曲拉通X-100(TX-100)和吐温80(TW-80),去除率分别为76.7%和73.4%. ②随着表面活性剂添加浓度的增加,土壤PAHs的去除率增大,当表面活性剂浓度超过5 g/L时,PAHs去除率的增幅减缓,可见,5 g/L是相对有效且经济的表面活性剂添加浓度. ③当洗脱时间为16 h时,NSF10对PAHs的洗脱达到平衡,继续延长洗脱时间,洗脱效果并未增强. ④增加NSF10用量有利于洗脱,固液比1∶40是最优固液比,此时PAHs的去除率已达到固液比为1∶100时的85.2%. ⑤非离子表面活性剂NSF10、TX-100、TW-80与阴离子表面活性剂SDS分别以体积比9∶1进行复配时均取得了优于单一活性剂的洗脱效果,NSF10与SDS体积比为7∶3时,增溶洗脱效果最为明显,比单一表面活性剂提高了18.2%. 研究显示,NSF10是一种高效的PAHs洗脱剂,添加浓度为5 g/L、洗脱时间为16 h、固液比为1∶40是其最优参数选择,其与SDS以体积比7∶3进行复配可进一步提升增溶洗脱效果.   相似文献   

18.
此文介绍了金属旋压成形轮的轮廓参数之间的关系,以及不同旋轮外形的应用侧重面.  相似文献   

19.
采用NH_4~+-N和NO_2~--N进水浓度分别为200 mg/L和300 mg/L不变,不断缩短HRT以启动厌氧氨氧化反应器,研究了此过程中氮的去除情况、厌氧氨氧化反应化学计量关系及颗粒污泥的特性。结果表明:历时58 d成功启动了厌氧氨氧化反应器,NH_4~+-N和NO_2~--N的去除率分别为96.62%、76.37%,总氮去除速率达到1.71 kg/(m3·d);NH_4~+-N的去除量、NO_2~--N的去除量及NO_3~--N的生成量三者之间的比值为1∶1.29∶0.26,表现出典型的厌氧氨氧化反应特征;运行后期,反应器内的颗粒污泥呈红棕色,结构紧密,表面可见明显的孔洞,其表面分布的球菌具有火山口状的凹陷结构,为典型的厌氧氨氧化菌。  相似文献   

20.
此文以198909K轴承刚性圈为例,介绍了钢板制件在冷冲压翻边成形工艺中预冲孔直径的确定方法。该方法是通过一次工艺试验,将用理论计算方法得到的预冲孔直径加工出的工件高度与产品要求进行比较,用其差量△H去逼近正确的预冲孔直径。采用该方法,可以保证翻边成形后工件的尺寸要求,对于精度高、批量大的产品加工有很大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号