首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
东海区北部小黄鱼生殖群体分布及与水团关系   总被引:5,自引:0,他引:5  
根据2003~2005年每年4月东海区北部小黄鱼CPUE、海水温度和盐度数据,分析了春季小黄鱼分布与水团间关系。结果表明,2003~2005年每年4月小黄鱼的平均CPUE分别为4.72、3.47和1.96 kg/h;小黄鱼的主要分布区可分为4个海域:A,黄海南部近海;B,黄、东海交界海域;C,长江口外海域;D,东海中北部海域;小黄鱼最适生存的底层温度为10~14℃,底层盐度为32~34.3;研究海域内底层水团包括:东海北部底层冷水团、黄海水团、黄-东海混合水团以及东海混合水团;分布区C内的小黄鱼主要位于东海混合水团和黄-东海混合水团的交汇处,其它3个分布区内的小黄鱼都是在东海北部底层冷水团与其它水团的交汇处。  相似文献   

2.
依据不同季节的调查,对渤海水体中颗粒有机碳(POC)的时空变化特征、碳库及影响因素进行对比研究.结果表明:春、夏、秋和冬季渤海调查海域颗粒有机碳的平均浓度分别为(338±146)μg/L、(491±136)μg/L、(358±228)μg/L和(2534±2601)μg/L,其中冬季渤海水体中POC浓度最高约是春季的7倍.不同季节渤海调查海域POC分布具有相似的规律,即由近岸浅水区向远岸逐渐降低,高值区多集中在调查海域北侧近岸、黄河入海口以及渤海湾等处.不同季节影响POC分布的因素不同,春、夏和秋季影响渤海调查海域POC分布的因素主要是陆源输入和浮游植物的生长繁殖,沉积物再悬浮是影响冬季渤海调查海域POC分布的主要因素.通过C/N比值探究不同季节渤海水体中POC来源发现,春季有45.3%、52.8%样品的C/N比值分别介于2.6~4.3和4~10之间,夏季有38.7%、32.3%样品的C/N比值分别介于2.6~4.3和4~10之间;秋季有84.4%样品的C/N比值介于4~10;而冬季有72.2%样品的C/N比值大于12,可见渤海水体中POC来源具有季节性差异,春季和夏季渤海调查海域POC主要来源于海洋生物的代谢活动,秋季渤海水体中POC的主要来源是浮游植物,冬季渤海POC的主要来源是再悬浮物作用下沉积物中保留下来的有机物.渤海POC碳库呈季节性变化,春、夏和秋季渤海调查海域POC碳库在6×105~7×105t范围内,冬季碳库最高,为2.5×106t.  相似文献   

3.
中原城市群区域碳储量的时空变化和预测研究   总被引:5,自引:0,他引:5  
为了有效评估中原城市群碳储量,运用灰色预测模型获取动态碳密度数据,结合Dyna-CLUE模型和InVEST模型,动态评估2005~2030年土地利用变化下不同情景的碳储量演变特征,以及城市发展对碳储量的影响.结果表明,2005~2020年中原城市群碳储量分别为1689.59×106t、2035.36×106t、2066.34×106t和2093.05×106t,呈现持续增加趋势;2030年经济发展情景、生态保护情景和经济生态协调发展情景下碳储量分别为2162.45×106t、2179.39×106t和2174.28×106t,经济发展情景下碳储量最低,生态保护情景下碳储量最高.碳储量变化与土地利用面积变化密切相关,主要表现为耕地面积的下降导致其碳储量减少约250×106t,林地面积的扩张导致其碳储量增加约103.4×106t,建设用地的扩张导致其碳储量增加约87.77×106t;耕地和草地面积与总碳储量呈较弱的负相关关系,林地、水域、建设用地和未利用地面积与总碳储量呈较强的正相关关系.2005~2030年中原城市群30个城市的碳储量分别为11.38×106t~214.24×106t,碳储量的变化反映出城市土地碳排放在2030年之前已经达到峰值,且经济生态协调发展情景可能更适合未来城市发展的目标.  相似文献   

4.
基于2019年8月与11月所获取的2个航次的水文、化学和生物资料,重点研究了夏、秋季南黄海和长江口海域溶解氧(DO)分布的时空格局及其与水文动力状况和生物地球化学过程之间的关系,探讨了该海区低氧特征及其对酸化环境的指示.结果表明,研究海域内DO含量及分布与流场/水团格局具有良好的对应关系,其中夏季长江口外台湾暖流影响区具有低氧的特征,秋季则在黄海冷水团海域下底层存在一个DO低值区.在上升流影响下,夏季长江口海域的底层低氧水体可抬升至上层水体,低氧水体由长江口海域向东北方向扩展;夏季长江口外下层低氧水体的涌升、黄海冷水团区DO最大值层的抬升均与跃层的抬升趋势基本一致,不仅反应了上升流对DO垂向分布的影响,同时也指示了冷水团边界区和长江口外海域涌升流的存在.此外,夏季长江口外东北部离岸低盐水团区的生物地球化学过程也对局地底层低氧区的形成有重要贡献.在夏季的长江口海域和秋季的黄海冷水团海域存在水体酸化区,其中长江口的酸化区范围与低氧区总体相吻合,秋季黄海冷水团底层酸化区也与DO低值区和冷水团范围基本一致.本研究结果可为南黄海和长江口海域低氧和酸化等生态环境问题的改善提供理论指导.  相似文献   

5.
为了有效评估城市群碳储量变化,以天山北坡城市群为研究对象,运用PLUS模型和InVEST模型,动态评估2000~2020年及2030年不同情景下土地利用变化及碳储量变化特征.结果表明,2000~2020年天山北坡城市群碳储量呈现持续增加趋势,且碳储量变化与土地利用变化密切相关,主要表现为2000~2010年林地面积的减少导致其碳储量减少约266×106t,2010~2020年草地面积的增加使其碳储量增加约69.14×106t.2030年自然发展情景、生态保护情景和经济快速发展情景下碳储量预测值分别为8875.88×106t、8895.58×106t和8841.58×106t;经济快速发展情景下碳储量最低,生态保护情景下碳储量最高.土地利用是影响碳储量空间变化分布的第一主导因素,贡献率接近于90%,土地利用强度与碳储量协调性分析与两者双变量空间自相关分析进一步验证了这一结论.土地利用变化在一定程度上能够对碳储量产生积极影响,对于本研究区而言,生态保护发展情景可能更符合未来城市发展模式,研究结果能够为土地利用规划提供参考.  相似文献   

6.
耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究   总被引:3,自引:0,他引:3  
为了量化桂林市碳储量并快速评估分级保护措施对区域碳储功能的影响,耦合InVEST模型碳储存模块和GeoSOS-FLUS模型,并基于土地利用数据和不同情景未来土地预测结果,对2000~2040年桂林市域范围六区十一县市内的碳储时空特征进行分析.结果表明:桂林市2000年、2010年和2020年的总碳储量分别为554.02×106t,553.58×106t,550.21×106t,呈现“逐年下降”的变化态势.同时,受人类活动和土地利用类型变化的影响,桂林市域各区县的碳储水平存在较大的时空差异,碳储量整体表现为“西北、西南及东部较高,东北、东南及中部较低”的空间分布特征.将桂林市碳储量高值区确定为碳储资源的优先保护区域,与自然变化情景相比,资源保护情景下桂林市林地得到有效保护,建设用地规模扩大受到限制.采取资源保护措施后,桂林市2040年总碳储量达到552.16×106t,较2020年增加了1.95×106t,中低密度碳储区所占比例明显下降,区域固碳能力大大增强.该研究结果可为桂林市国家可持续发展示范城市建设提供指导,也可为碳储资源精准保护和土地利用管理决策提供科学参考.  相似文献   

7.
冬、夏季北黄海生源要素的平面分布特征   总被引:2,自引:0,他引:2  
根据2006年7至8月(夏季)和2007年1月(冬季)对北黄海海域2个航次的调查资料,分析并讨论了北黄海冬、夏季生源要素的平面分布特征。结果表明:(1)在北黄海,夏季生源要素的浓度普遍较低,PO4-P、DIN、SiO3-Si以及DO的整体平均值分别为0.20,3.25,4.45μmol/dm3和8.12 mg/dm3;而在冬季它们的浓度则有很大提高,整体平均值分别是夏季的2.80,2.46,2.77和1.20倍。(2)夏季,表层营养盐浓度近岸远高于远岸,底层在黄海冷水团盘踞区为高值,DO的分布也与之类似;冬季,DIN与PO4-P分布相似,SiO3-Si和DO则各有其独特性。  相似文献   

8.
基于Guenther提出的天然源性有机化合物(BVOCs)公式计算模型,利用高精度土地利用遥感资料,模拟估算了2000—2020年陕西省107个区县BVOCs的排放量、排放组成及时空分布规律.测算结果显示,陕西省近20年来BVOCs排放量呈上升趋势,总排放量从101.17×104 t·a-1上升至111.43×104 t·a-1.近20年陕西省年平均BVOCs排放量为106.01×104 t·a-1,其中,异戊二烯排放量为31.65×104 t·a-1,占比为29.86%;单萜烯排放量为35.61×104 t·a-1,占比为33.60%;其他VOCs排放量为38.75×104 t·a-1,占比为36.54%.BVOCs排放总量存在季节性变化,呈夏季高、冬季低的规律,夏、冬两季排放量分别为69.0×104、...  相似文献   

9.
基于2016年3月对长江口及邻近海域的调查,剖析该海域CO2分压及相关参数的区域分布特征,估算其海-气界面CO2的交换通量,并探讨了源/汇分布特征背后的物理机制。研究表明,调查区域海表pCO2变化范围为321~575 μatm,整体呈现出近岸高、离岸低的分布趋势。至冬季末期,海表pCO2分布主要受控于低温低盐高pCO2的河口水与高温高盐低pCO2的东海陆架水的水团混合影响,水体垂直混合作用对海表pCO2影响不大。长江口及邻近海域冬季整体表现为大气CO2的弱汇,通量值为-4.43±7.41 mmol/m2/d。从区域碳汇强度看来,近岸长江冲淡水区近乎与大气保持平衡,黄东海混合水区和台湾暖流区表现为大气CO2的中/强汇,是冬季末期海洋吸收大气CO2的主要贡献区域。  相似文献   

10.
中国亚热带重要树种植硅体碳封存潜力估测   总被引:21,自引:15,他引:6  
研究选取中国亚热带阔叶林、针叶林、竹林等3 种森林类型中常见的7 个树种,通过微波消解法提取其植硅体,并对其植硅体中碳含量进行测定,计算植硅体产量并估测碳封存量,结果表明:① 7个树种叶子植硅体碳占干物质含量分别为毛竹3.31±0.53 g·kg-1、杉木0.30±0.06 g·kg-1、马尾松0.40±0.11 g·kg-1、苦槠0.19±0.04 g·kg-1、青冈0.88±0.09 g·kg-1、木荷0.49±0.18 g·kg-1、枫香1.12±0.33 g·kg-1;② 相关分析表明,硅与植硅体含量(P<0.05,R2=0.989 7)、植硅体与植硅体碳占物质含量(P<0.05,R2=0.881 6)、植硅体碳与植硅体碳占干物质含量(P<0.05,R2=0.354 4)之间的相关性达显著水平.③ 毛竹的植硅体碳封存速率最高,若以最高植硅体碳封存速率0.050 6t- e-CO2·hm-2·a-1计算,面积为3.87×106 hm2的毛竹林每年可封存约1.96×105 t CO2;④ 杉木、马尾松的植硅体碳封存速率分别为0.005 6 和0.010 8 t-e-CO2 ·hm-2 ·a-1,面积分别为1.13×107、1.20×107 hm2的杉木林、马尾松林每年可封存约6.33×104、1.30×105 t CO2;⑤ 阔叶林植硅体碳封存速率介于0.000 5~0.019 3 t-e-CO2·hm-2·a-1之间,面积为2.49×107 hm2的阔叶林每年可封存1.25×104~48.15×104 t CO2.  相似文献   

11.
基于2011年7月(夏季)和2011年10月(秋季)北黄海海域2个航次的调查资料,对北黄海夏、秋季营养盐的时空分布特征及其影响机制进行了探讨.结果表明,夏、秋季北黄海营养盐的平均浓度分别为:NO3- (1.57±1.71), (5.93±3.84) μmol/L,NO2- (0.22±0.18), (0.88±0.93) μmol/L,PO43- (0.22±0.13), (0.40±0.23) μmol/L,Si(OH)4 (4.98±2.23), (6.71±3.24) μmol/L,NH4+ (1.35±0.90), (1.23±0.69) μmol/L,夏、秋季北黄海NO3-分别占溶解无机氮的49%和74%.2个季节近岸海域表层营养盐浓度均高于中部海域,底层浓度高于表层,高值区是冷水团区.各断面营养盐的垂直分布层化现象明显,受冷水团以及水体交换混合的共同影响,浓度由表至底逐渐升高.夏、秋季表底层N/P、Si/N和Si/P比值的水平分布为近岸海域高于中部海域,且夏季北黄海浮游植物的生长繁殖受磷限制.  相似文献   

12.
通过2019年10月和12月对渤海海域进行的调查及样品采集,分析溶解N2O的分布和影响因素,并估算其海-气交换通量。结果表明:秋季表层海水溶解N2O浓度为(8.2±0.5)nmol/L,饱和度为(97.5±4.7)%;冬季浓度为(11.0±0.8)nmol/L,饱和度为(93.8±4.5)%。渤海表层海水溶解N2O浓度呈现明显的季节性差异,冬季浓度高于秋季,且高值区均集中在黄河口以及莱州湾附近。秋季渤海溶解N2O处于接近饱和状态,冬季则处于不饱和状态。温度、陆源淡水输入以及沉积物-水界面交换对渤海溶解N2O的分布有重要影响。2019年10月和12月黄河向渤海输入N2O的量分别约为4.2×104 mol和1.1×104 mol,是渤海N2O的重要来源,而秋、冬季渤海底层的沉积物既可能是渤海水体N2O的源,也可能是其汇。秋季和冬季渤海N2O海-气交换通...  相似文献   

13.
二甲基硫(dimethyl sulfide,DMS)海气交换对全球气候和环境变化有重要贡献。本文利用已发表的2005-2017年文献数据,结合ERA-interim(European Centre for Medium-Range Weather Forecasts Interim Re-Analysis)风速数据,估算了黄、东海DMS海气通量,并分析了其季节变化和空间差异。结果表明:南黄海和东海DMS年平均海气通量分别为(8.63±4.90)μmol/(m2·d)和(12.77±8.42)μmol/(m2·d),除秋季外,东海海气通量高于南黄海;DMS海气通量季节变化显著,夏季最大,冬季最小,南黄海秋季高于春季,东海春季高于秋季。基于方差分解,本文讨论了各因子方差对DMS海气通量方差的贡献,在南黄海,春季表层DMS浓度和交换速率均对海气通量有主要影响,夏季和冬季交换速率对海气通量影响较大;在东海,春季海气通量受到交换速率和DMS浓度交互作用的影响较大,夏季海气通量主要由DMS浓度控制,秋季和冬季交换速率对海气通量的影响较大。南黄海和东海占全球海洋面积的0.30%,其DMS排放量为0.1461 TgS/a,占全球海洋DMS排放量的0.52%。  相似文献   

14.
为明晰水利工程修建后的黄河干流生态完整性与多样性状况,于2019年春季及秋季对黄河干流自源区至河口全河段浮游植物群落进行了调查.共鉴定浮游植物8门130属350种,春季(229种)和秋季(307种)物种数分别占总物种数的65.43%和87.71%,硅藻门和绿藻门均为两季浮游植物优势门类;春秋两季所有断面浮游植物密度及生物量平均值分别为162.39×104cells/L、2.53mg/L和141.12×104cells/L、3.04mg/L;根据多样性指数进行水质生物评价,秋季整体水质优于春季水质.受水库影响断面的浮游植物密度与生物量均大于临近自然河道断面;多年调节水库和年调节水库浮游植物现存量为库首>库中>库尾,不完全年调节水库则与之相反,日调节水库库区内三个断面差异不大.水质生物评价结果表明,黄河干流自源区至河口的污染程度逐渐增加.  相似文献   

15.
蒋昊  赵亮  张晶 《中国环境科学》2020,40(9):3981-3991
为了解黄海氮营养盐的循环规律与收支情况,利用一个高分辨率物理-生物地球化学耦合模型(ECSECOM),模拟了黄海溶解无机氮(DIN)、颗粒有机氮(PON)的循环收支情况,分析了各源汇项的空间分布特征及季节变化规律及不同形态之间转化规律.结果表明:黄海DIN浓度在春、夏季较低,秋、冬季恢复至高水平.PON浓度在冬、春季较低,在夏、秋季有升高的趋势.浮游植物光合作用和呼吸作用是DIN最主要的汇和源,初级生产消耗的DIN中29.47%由水体内碎屑物质矿化分解提供,外源输入的DIN占总浮游植物生长需求的14.60%.浮游植物死亡是PON最大的源,沉积物为PON的净汇.大气氮沉降对黄海的影响范围全面,底沉积物释放和河流输入的DIN对黄海的影响是局地的.从PON与DIN之间的循环转化来看,PON中有48.50%转化为DIN,其余大部分都沉积到海底界面,而DIN向PON的转化率为38.85%.  相似文献   

16.
根据2013年7月(夏季),11月(秋季)和2014年5月(春季)渤海中部海域营养盐数据以及温盐等数据,以浮游植物对营养盐的吸收阈值和化学计量关系为判断标准,对研究海域营养盐分布、限制状况以及季节变化特征进行分析,结果表明:调查海域内各营养盐组分变化均呈现明显季节性特征,表现为夏季低秋季上升春季下降的趋势.夏季受冲淡水影响,海水存在层化现象,溶解无机氮(DIN)、PO43--P和SiO32--Si含量分别为(10.33±7.75)、(0.05±0.03)和(3.94±3.19)μmol/L,DIN/P较高,Si/DIN远低于1,其中表层和10m层存在P和Si限制站位分别达93%、93%和40%、20%,限制状况严重.秋季受底层沉积物扰动再悬浮及营养盐矿化释放等因素影响,各种营养盐含量迅速上升,DIN、PO43--P和SiO32--Si含量为(16.44±6.51)、(0.54±0.20)和(16.94±6.37)μmol/L,分别升高了1.6、10.8和4.3倍,垂向分布差异较小,且仅存在P潜在限制现象.春季由于陆源输入相对较少,同时受浮游植物吸收等因素影响,各营养盐含量急剧下降,DIN、PO43--P和SiO32--Si含量分别为(9.04±8.06)、(0.06±0.04)和(2.47±1.90)μmol/L,分别降低了45%、89%和85%,其中部分站位PO43--P和SiO32--Si含量低于阈值,在表层和10m层海水中存在P和Si限制站位分别达70%、65%和55%、50%,对海域内硅藻作为优势种的浮游植物生长和初级生产力产生影响.  相似文献   

17.
本研究于2018年冬季、春季、夏季和秋季对梅山湾水质进行监测,并对梅山湾水体中营养盐的时空变化特征及富营养化进行分析,结果表明:NO3-N是DIN的主要成分,占比为68.25%~98.21%。冬、春和秋季DIN和PO4-P浓度均值均高于夏季,夏季的SiO3-Si则高于其他季节。除夏季外,冬、春和秋季的部分营养盐浓度与叶绿素a均呈显著负相关(P<0.01),表明不同季节梅山湾的营养盐不仅受浮游植物的消耗影响,还与外源输入及环境介质的释放相关。除夏季外,其他3个季节盲肠段的PO4-P浓度均值高于湾内,由北堤向南堤呈不断下降的趋势。春季和夏季,盲肠段的SiO3-Si比湾内低,与秋、冬季相反。综合污染指数评价结果表明春季和秋季盲肠段主要为中度污染,湾内主要为轻度污染,夏季则相反;潜在富营养化评价结果表明盲肠段主要为磷中等限制潜在性富营养以及贫营养,湾内主要为磷限制潜在性富营养和磷限制富营养。  相似文献   

18.
根据2011—2014年共12次长江大通站的调查数据,分析了长江水体中溶解无机氮(DIN)、活性磷酸盐(PO4-P)和活性硅酸盐(SiO3-Si)浓度的季节变化规律并估算了各项营养盐入海通量,比较分析了自1960s以来通过长江输入的各项营养盐通量变化及对长江口海域营养盐浓度和结构的影响。结果表明,长江水体中DIN浓度夏秋高、冬春低,而PO4-P浓度则呈现秋冬高、春夏低的变化特点,SiO3-Si浓度与总悬浮颗粒物浓度显著相关,但无明显季节变化。DIN、SiO3-Si通量与长江径流变化一致,呈现夏季高、冬季低的变化特征;PO4-P通量则呈现秋季高、冬季低的变化特征。自1960s以来,DIN和PO4-P通量均呈上升趋势,2010s较1960s分别增加9.5倍和3.6倍,而SiO3-Si通量呈下降趋势,2010s较1960s减少0.6倍;导致长江口海域DIN和PO4-P年均浓度分别升高4.5和0.8倍,SiO3-Si年均浓度则下降0.6倍,氮磷比升高两倍,硅氮比和硅磷比分别降低0.9和0.8倍,这可能是导致近60 a来长江口海域赤潮发生面积增加和硅藻比例减少的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号