首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
张庭廷  胡春霞  陈波 《中国环境科学》2021,41(11):5345-5352
针对铜绿微囊藻在稻草秸秆(水稻分蘖枝)发酵液胁迫下的酶学特征及抗氧化能力、藻毒素和多糖含量等生化指标进行了检测分析,旨在为利用稻草秸秆抑藻提供进一步理论依据.结果表明:铜绿微囊藻在水稻分蘖枝发酵液胁迫下,其表征藻细胞代谢水平的酯酶活性显著降低,实验第5d,最高浓度组(0.65%V/V)99.9%的藻细胞内酯酶活性均被抑制,超氧化物歧化酶(SOD)与谷胱甘肽过氧化物酶(GSH-Px)活力分别下降至同期对照组的11.03%和8.47%;丙二醛(MDA)含量则与发酵液浓度以及作用时间呈显著正相关,pearson分析表明,所有浓度组和作用时间内r值均大于0.9,而P值均小于0.01,表明水稻分蘖枝发酵液可显著降低藻细胞的抗氧化水平;但高浓度水稻分蘖枝发酵液没有引起微囊藻毒素(MCs)升高,甚至显著降低MCs和多糖的含量,与对照组相比,P<0.01.因此,水稻分蘖枝发酵液可通过影响铜绿微囊藻的代谢过程,降低藻细胞抗氧化以及抵御对环境胁迫的能力,从而达到有效抑藻的目的.  相似文献   

2.
为有效利用农业废弃物稻草秸秆进行抑藻,本研究对不同稻草秸秆进行了特定方式的发酵,测定了发酵液对常见淡水藻类的化感效应,探讨了其中抑藻作用强的发酵液抑藻机理.结果表明:与普通稻草秸秆发酵液相比,水稻分蘖枝发酵液对铜绿微囊藻的抑制效果显著好于普通稻草秸秆发酵液(P<0.05),作用72h水稻分蘖枝发酵液抑制率为93.21%,168h为97.96%,而稻草秸秆发酵液120h抑制率为68.20%,168h抑制率反而显著下降,只有27.65%;前者Eh50为14.073h,后者为21.036h;水稻分蘖枝发酵液对蓝藻(铜绿微囊藻)和绿藻(蛋白核小球藻、斜生栅藻)3种淡水藻均有良好抑制作用,对铜绿微囊藻抑制作用最佳(P<0.05).在水稻分蘖枝发酵液胁迫下,铜绿微囊藻叶绿素a以及藻蓝蛋白(PC)和别藻蓝蛋白(APC)含量下降,藻细胞叶绿素自发荧光值持续降低,藻细胞结构破坏.推测水稻分蘖枝发酵液的抑藻机制之一是将藻细胞光合系统作为其攻击的靶点从而抑制藻类生长,并最终破坏细胞结构,引起细胞凋亡.  相似文献   

3.
以铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scendesmus obliquus)为研究对象,分别以硝酸钠、氯化铵和尿素为氮源,以磷酸氢二钾、甘油磷酸钠和三磷酸腺苷为磷源,配置不同浓度的氮磷培养基(氮浓度1.00,4.00,8.00mg/L,磷浓度0.20,2.00mg/L),通过一次性培养实验研究2种藻氮、磷饥饿时对不同形态和不同浓度氮磷的生长响应.结果表明,2种藻对氮、磷的形态和浓度响应均不同,且藻种之间也有明显的响应差异.铜绿微囊藻在3种浓度硝酸钠培养下比生长速率无显著差异,而斜生栅藻的比生长速率在硝酸钠4.00mg/L时达到最高,说明1.00mg/L的硝酸钠已满足铜绿微囊藻对氮的生长需求,斜生栅藻对氮的需求高于铜绿微囊藻.铜绿微囊藻在1.00,4.00mg/L氯化铵和尿素培养下的比生长速率相同,且比生长速率和现存量均高于同浓度硝酸钠培养组,说明相比于硝酸钠,铜绿微囊藻更喜欢利用还原态的氯化铵和尿素.但当氯化铵浓度高达8.00mg/L时,铜绿微囊藻比生长速率低于相同浓度尿素和硝酸钠培养组,也低于低浓度氯化铵培养组,说明高浓度氯化铵不利于铜绿微囊藻的生长.然而,斜生栅藻在8.00mg/L氯化铵培养下比生长速率和现存量与尿素培养时无显著差异,而且均高于硝酸钠培养组,说明斜生栅藻对氯化铵的耐受能力比铜绿微囊藻高.3种形态的磷均能被铜绿微囊藻和斜生栅藻利用,但铜绿微囊藻用高浓度有机磷培养时的现存量更高,斜生栅藻则在高浓度无机磷培养下生长更好,说明铜绿微囊藻比斜生栅藻能更好的利用有机磷,高浓度的无机磷不利于铜绿微囊藻生长.太湖目前铵氮浓度降低显著,水体无机磷占比很低,溶解态有机磷浓度占比较高,这些都更有利于蓝藻形成优势.  相似文献   

4.
开展室内模拟实验,研究鲢、鳙和鲴不同混养系统中排泄物的量及微囊藻活性的变化.实验设置鲢鳙组合,鲢鳙鲴组合以及对照组,其中鲢鳙生物量放养比例为3:1,鲢鳙鲴组合中生物量放养比例为3:1:1,实验周期14d.结果显示,鲢鳙组和鲢鳙鲴组均能降低微囊藻密度,两组无显著差异(P>0.05),但是均极显著小于对照组(P<0.01).混养鲴鱼可以降低排泄物的量及微囊藻的被消化率,鲢鳙鲴组排泄物的量在第4d开始下降,实验结束时是鲢鳙组的16.08%.鲢鳙鲴组微囊藻的被消化率,第5d后快速增长,至实验结束达到85.9%,极显著高于鲢鳙组(P<0.01).鲢鳙组和鲢鳙鲴组排泄物中的氨基酸和总氮含量相比未被摄食微囊藻减少率分别为33.17%、53.62%和34.97%、54.27%.鲢鳙鲴组和鲢鳙组排泄物光能活性(Fv/Fm、Fv/Fo、Yeld、qP及NPQ表示)和生长活性差异(EPS、Chla表示)较大,鲢鳙组微囊藻叶绿素荧光参数(除NPQ外)值经过短暂的下降后开始增长,而鲢鳙鲴组Fv/Fm、Fv/Fo、Yeld及qP在培养过程中下降显著,且至第5d后叶绿素荧光参数(除NPQ外)均极显著低于鲢鳙组(P<0.01).鲢鳙鲴组NPQ呈上升的趋势,且第7d后极显著高于鲢鳙组(P<0.01).在排泄物培养期间,鲢鳙鲴组排泄物中微囊藻的胞外多糖(EPS)含量、叶绿素a(Chl a)浓度不断下降,至实验结束极显著低于鲢鳙组(P<0.01).结果表明,在鲢鳙控藻的基础上,混养鲴鱼可以减少鲢鳙摄食微囊藻后的排泄物,同时降低排泄物中微囊藻活性,减少了因鲢鳙排泄物引起的水环境污染和生态影响.  相似文献   

5.
工农业生产及人类生活使用了大量抗生素及其衍生品,抗生素的大量使用造成严重的环境污染。该研究选取在水环境中检测频率较高、生态风险较大的氧氟沙星(OFL)、环丙沙星(CIP)以及诺氟沙星(NOR)等代表性氟喹诺酮类抗生素为研究对象,以典型原核微藻铜绿微囊藻以及真核藻类斜生栅藻作为受试生物,通过藻细胞密度、叶绿素a以及抗氧化应激水平的变化综合分析喹诺酮类抗生素对铜绿微囊藻和斜生栅藻的潜在毒性效应及作用机理。结果表明,典型氟喹诺酮类抗生素暴露会显著抑制铜绿微囊藻的生长,各抗生素处理组藻密度下降1~2个数量级,抑制率高达99.37%,同时叶绿素a浓度急剧下降直至低出检测限。氟喹诺酮类抗生素可引发藻细胞产生大量活性氧自由基(ROS),进而引起脂质过氧化。铜绿微囊藻经暴露后,超氧化物歧化酶(SOD)与对照组相比有着十分显著的升高,丙二醛(MDA)与对照组相较有着显著的降低(P≤0.01)。而氟喹诺酮类抗生素暴露对斜生栅藻则起到促进作用,藻密度随着环丙沙星浓度的升高而增加。处理组SOD的波动水平与对照组差异不显著,但处理组MDA的含量变化与对照组差异显著升高(P≤0.05),斜生栅藻虽受到一定氧化损伤...  相似文献   

6.
唐超  喻慧  杨传俊  蔡澎 《环境科学学报》2017,37(8):3194-3200
研究了3种典型电磁环境(射频电磁辐射(RF-EMF)、极低频电磁场(ELF-EMF)、交变电场(AEF))胁迫对铜绿微囊藻(Microcystis aeruginosa)细胞氧化应激(超氧化物歧化酶(SOD)、丙二醛(MDA))和光合固碳酶(核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、果糖-1,6-二磷酸醛缩酶(FBA))的影响作用.结果表明,短期和长期RF-EMF、ELF-EMF及AEF暴露胁迫铜绿微囊藻细胞,总体能极显著提高藻细胞的SOD活性(p0.01).铜绿微囊藻经RF-EMF、ELF-EMF及AEF短期暴露处理后,均极显著提高了藻细胞内MDA含量(p0.01);铜绿微囊藻经RFEMF、AEF长期暴露处理后,藻细胞内MDA含量极显著降低(p0.01).RF-EMF暴露处理铜绿微囊藻,总体能显著提高藻细胞Rubisco酶活性(p0.05).长期RF-EMF、AEF和ELF-EMF暴露下的铜绿微囊藻,总体表现出FBA酶活性极显著降低(p0.01).以上结果说明,RF-EMF、ELFEMF、AEF均能够诱导铜绿微囊藻发生氧化应激反应.而RF-EMF能够对铜绿微囊藻细胞参与光合作用的关键酶(Rubisco和FBA)产生一定的调控作用,表明射频电磁波能够在一定程度上影响铜绿微囊藻细胞的光合作用.  相似文献   

7.
为探究新生和老化聚苯乙烯纳米塑料(PSNPs)对铜绿微囊藻生长和产毒特性的影响,本研究通过紫外老化制备了50nm的老化PSNPs,开展了不同浓度(0.1,1,10mg/L)新生和老化PSNPs对铜绿微囊藻的长期(37dd)暴露试验.结果表明,紫外老化处理使PSNPs表面出现裂纹,平均粒径变小,羰基指数由0.023上升至1.055.两种PSNPs均会在铜绿微囊藻细胞表面聚集,其中老化PSNPs暴露造成的细胞形态损伤更严重,并对铜绿微囊藻造成剂量正相关的生长和光合抑制,氧化损伤,促进了微囊藻毒素(MC-LR)的合成和释放.在相等暴露剂量下,老化PSNPs对铜绿微囊藻上述生理过程的调控作用更强.其中,10mg/L新生和老化PSNPs暴露下,最终藻密度比对照组分别降低了26.65%和45.07%,丙二醛(MDA)含量的最大值是对照组的1.74和1.93倍,最终胞外MC-LR含量是对照组的1.26和1.44倍.老化PSNPs对胞外MC-LR相对更强的促进作用,是由其诱导的MC-LR合成增加和细胞膜破损所共同导致的.  相似文献   

8.
沈清清  彭谦  赖泳红  纪开燕  韩秀林 《环境科学》2012,33(12):4316-4321
为证实固定化果胶酶抑制蓝藻生长的作用,在实验室条件下,以铜绿微囊藻(Microcystis aeruginosa)为受试藻种,用共培养法观察了固定化果胶酶对藻细胞群体的作用、用电镜观察了共培养后藻细胞的损伤状况,测定了对其生理生化特征的影响.结果表明固定化果胶酶与藻共培养液第3 d明显黄化,且黄化程度与固定化果胶酶的用量和培养时间呈正相关系;电镜照片显示固定化果胶酶对藻细胞有损伤作用,轻微损伤的藻细胞出现质壁分离,表面粗糙、凸凹不平,形状不规则,严重损伤的藻细胞表面发生深度皱缩或细胞结构完全解体;随着固定化果胶酶与铜绿微囊藻共培养时间的延长,藻细胞生长量、叶绿素a含量显著降低,表明藻细胞受到胁迫和伤害,藻细胞正常的光合作用受到严重影响.丙二醛(MDA)值显示藻细胞抗氧化防御体系被破坏,细胞内发生严重膜脂过氧化.固定化果胶酶能有效抑制铜绿微囊藻细胞的生长,铜绿微囊藻生长抑制率可高达96%.  相似文献   

9.
藻与细菌通常共生于淡水生境,形成藻-菌共生体系,藻际细菌是水体生态系统中的重要组成部分,对藻的消长起重要的调控作用,但有关藻际微环境中藻与细菌的互作机制还不清楚. 采用传统的细菌平板培养方法,从太湖优势水华藻——铜绿微囊藻(Microcystis aeruginosa)细胞表面分离出一株藻际细菌Ma-B1,基于生理、生化试验和16S rRNA基因序列分析,初步鉴定为甲基营养芽孢杆菌(Bacillus methylotrophicus). 通过测定细胞生长,分析藻-菌相互作用机理. 结果表明:一定浓度(>60 μg/mL)的Ma-B1的胞外代谢物可显著抑制铜绿微囊藻的生长(培养基为BG11,28 ℃/日,22 ℃/夜,3 000 lx,光暗比为14 h∶10 h);铜绿微囊藻的胞外滤液(500 μL/mL)对Ma-B1的生长有一定的促进作用,但其总滤液(500 μL/mL)显著促进Ma-B1的生长;Ma-B1细胞对铜绿微囊藻的生长没有显著影响,而高浓度(藻菌比10∶1)的铜绿微囊藻细胞则可显著抑制Ma-B1的生长. 铜绿微囊藻与Ma-B1之间存在复杂的相互抑制或促进关系,共同影响着藻、菌在自然水体生态系统中的消长.   相似文献   

10.
EDTA和铁对铜绿微囊藻和四尾栅藻生长和竞争的影响   总被引:10,自引:4,他引:6  
储昭升  金相灿  阎峰  郑朔方  庞燕  曾清如 《环境科学》2007,28(11):2457-2461
铁限制不但会影响浮游植物的种群密度,而且会影响浮游植物的群落结构.为了探讨有机配体和铁的作用对湖泊中浮游植物的种群竞争,采用批量培养的方法,研究了不同EDTA及Fe浓度下,太湖蓝藻铜绿微囊藻和绿藻四尾栅藻的生长和竞争.结果表明,较高浓度的EDTA(≥13 .5 μmol/L)可以抑制铜绿微囊藻的生长,但不抑制四尾栅藻,因而有利于四尾栅藻占据优势;铁的浓度由3 μmol/L增大至18 μmol/L时,可缓解较高浓度EDTA(13 .5~27 μmol/L)对铜绿微囊藻的抑制作用,而增大其它微量元素浓度(B、Mn、Zn、Cu、Mo等)则无此作用;说明高浓度EDTA与铁的螯合作用能抑制铜绿微囊藻而不抑制四尾栅藻.高浓度EDTA对2种藻具有不同影响的原因可能是2种藻对铁的吸收机制不同.  相似文献   

11.
从广州流花湖分离获得一株溶藻菌株EA-1,16S rDNA分析表明菌株EA-1属于肠杆菌属(Enterobacter).研究了肠杆菌EA-1对铜绿微囊藻的溶藻效果和溶藻机制.结果表明,对数期EA-1具有最佳溶藻效果,投加比例为10%,初始叶绿素a含量为1.43mg/L时,EA-1能实现3d内完全除藻,叶绿素a含量为2.39mg/L时,共培养6d后,抑制率为84.1%±1.3%.EA-1通过分泌胞外溶藻物质间接溶藻,生理生化响应表明,EA-1无菌滤液胁迫下,藻细胞膜脂过氧化损伤严重,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性先急剧上升后下降.三维荧光光谱(EEM)表明溶藻产物为类腐殖酸,类富里酸和类蛋白类物质.扫描电子显微镜(SEM)显示藻细胞出现褶皱,内陷和萎缩现象.透射电子显微镜(TEM)显示藻细胞破坏过程为:首先,胶质层与细胞壁分离,光合片层变得松散和不规则,内含物被部分降解.随后,光合片层被彻底破坏,DNA核物质和多聚磷酸盐等营养物质颗粒被降解,藻细胞内部结构被完全破坏,藻细胞死亡.  相似文献   

12.
象豫  徐慧  李昆  王希  吴昊澜  樊华 《中国环境科学》2021,41(4):1900-1908
以铜绿微囊藻、氯化铝(AlCl3·6H2O)为研究对象,通过三维荧光、场发射扫描电镜等表征,探究了藻类对氟化物混凝去除机制的影响.结果表明,在pH值为7.0,8.0,9.0,Al投加量在20.0~80.0mg/L的条件下,铜绿微囊藻对混凝除氟有明显的促进作用,其促进作用主要在于藻絮体对氟的表面吸附.铜绿微囊藻与氯化铝水解产物通过吸附架桥和网捕卷扫作用,聚集成较大较多的絮体.絮体粒径越大,除氟率越高.pH值为7.0,Al投加量为40.0mg/L时,絮体粒径达到最大值500μm,此时氟去除率最高,为77.37%;当Al投加量为80.0mg/L时,藻细胞破损严重,有机物过多释放,对混凝除氟起阻碍作用.絮体破碎吸附实验结果表明,对絮体进行一定强度破碎可以增加吸附位点,从而提高氟的去除率;但破碎强度过大,絮体粒径过小,对氟的吸附效率亦会降低.  相似文献   

13.
为改善饮用水藻类的混凝去除效果,以铜绿微囊藻为研究对象,考察了单独投加Ca2+、Ca2+与PAC联用、Ca2+与CO32-原位结晶三种方法的除藻效果,并对Ca2+和结晶产物CaCO3的除藻机制进行探讨.结果表明,单独采用Ca2+时,Ca2+在低浓度下对藻细胞具有吸附电中和作用,高浓度时同时还有架桥作用,但两者均无法实现对铜绿微囊藻的去除.Ca2+与PAC联用,Ca2+可以通过吸附电中和显著提高PAC的除藻效果,最大去除率可达98.0%,同时Ca2+与溶解性藻源有机物(dAOM)的络合可将残余铝降低50%以上.含藻水中原位CaCO3结晶对铜绿微囊藻的去除率最高可达83.5%,其产物为带正电荷、粒径2~4 μm左右的球型球霰石.球霰石对藻细胞的去除机制包括球霰石与藻细胞的互絮凝,以及球霰石团聚物对藻细胞的卷扫絮凝,同时球霰石还可以作为加重剂促进藻晶产物沉降分离.自来水厂采用CaCO3原位结晶与PAC联用除藻,可望降低PAC投加量和残余铝风险,并解决CaCO3原位结晶导致的浊度和pH偏高问题.研究成果为饮用水除藻提供了新思路.  相似文献   

14.
以铜绿微囊藻为研究对象,从抑制率,有效剂量,起效时间,抑制时效和使用成本等方面评价了酚酸类,生物碱类,脂肪酸和酯类共13种化感物质的抑藻效应.结果表明,生物碱类物质对微藻生长的抑制效果最强,其抑制率(>80%)高达酚酸类,脂肪酸和酯类化感物质的4~52倍,其抑藻时效也显著长于酚酸类,脂肪酸和酯类化感物质.生物碱类物质中,血根碱具有最大饱和抑制率(>90%),但其单位剂量的抑藻率[11%/(mg/L)]仅为白屈菜红碱,芦竹碱和小檗碱的16%,49%和63%;白屈菜红碱对铜绿微囊藻的抑制作用最为灵敏高效,抑制铜绿微囊藻所需的最低剂量为0.2mg/L,最短时间为0.4d,且在2mg/L条件下便能维持7d以上的抑制时效.4种生物碱中,血根碱与白屈菜红碱的使用成本较高,超过芦竹碱和小檗碱的800倍.综合各项抑藻特性,植物化感物质的抑藻能力顺序前四为白屈菜红碱 > 小檗碱 > 血根碱 > 芦竹碱;抑藻成本顺序前四为:壬酸 < 芦竹碱 < 小檗碱 < PHBA.  相似文献   

15.
为了探究不同藻竞争利用不同形态磷对浮游植物群落结构影响,分别以楯形多甲藻不等变种(Peridinium umbonatum var.inaequale)和铜绿微囊藻(Microcystis aeruginosa)进行PM4A板多磷源单培养实验,并向原位水样添加其两藻种进行5'-单磷酸腺苷(5'-AMP)和磷酸氢二钾(K2HPO4)增殖模拟实验.结果表明:不同的藻种对不同形态磷的竞争利用具有选择性,楯形多甲藻不等变种和铜绿微囊藻分别能够利用溶解性有机磷(DOP)35种和25种,两种藻能够较好的利用氨基酸和核苷酸.当以楯形多甲藻不等变种调控起始生物量占比(绿藻:甲藻:硅藻:蓝藻为38%:26%:20%:7%),无论以有机磷还是无机磷为磷源,甲藻的竞争优势明显,生物量占比达37.11%~50.19%;当以铜绿微囊藻调控起始生物量占比(绿藻:蓝藻:硅藻:甲藻为38%:29%:20%:4%),蓝藻竞争优势明显,生物量占比达52.25%~53.44%.在温度和光照等环境条件一定的情况下,磷源形态和藻类起始生物量结构共同影响浮游植物群落结构演替.  相似文献   

16.
采用盆栽试验方法,揭示了旺盛期烟草(云烟99)对镉的富集特点以及光合等生理指标对镉胁迫的响应.结果表明:当土壤镉含量分别为4.43,7.94,17.33和49.79mg/kg时,烟草茎、叶及地上部镉的富集系数(植物镉含量与土壤镉含量的比值)均大于1,转移系数(地上部镉含量与根镉含量的比值)也大于1,但镉含量未达到镉超富集植物的临界含量标准100mg/kg.当土壤镉含量为4.43mg/kg时,烟草的耐性较强.当土壤镉含量大于7.94mg/kg时,烟草的生物量、叶片光合色素含量、净光合速率、蒸腾速率、气孔导度和SOD活性均显著下降(P<0.05),胞间CO2浓度和MDA含量显著提高(P<0.05).旺盛期烟草对镉富集比较敏感,建议烟草的种植要远离镉污染土壤或镉背景值较高的土壤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号