首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vehicular emissions of NO(x) and NH(3) result in elevated concentrations of nitrogen at roadside verges. To determine the extent that vehicular nitrogen emissions, disturbance and management affect the vegetation composition of road verges, a survey of 92 verges in Scotland was carried out with sites stratified by background nitrogen deposition and road type. NO(x) and NH(3) concentrations were monitored at 15 key sites for a year, and showed a decreasing gradient with increasing distance from the road. Ellenberg fertility indices of the vegetation communities also showed a general decrease with increasing distance from the road, but there was no straightforward correlation with NO(x) and NH(3) air concentrations between sites. Cover of bare ground, ruderal species and salt-tolerant species were highest at the verge edge. The proximity of the verge to traffic is important both in terms of NO(x) and NH(3) gradients, but also for deposited salt, grit and physical disturbance.  相似文献   

2.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

3.
A comprehensive field study of atmospheric NO2 was conducted throughout the state of Bahrain, using passive diffusion tube samplers. A total of 319 tubes were used, and all sites were chosen to include residential, heavy and low traffic roads, industrial, airport and commercial areas. The results of the survey revealed marked spatial variations in NO2 concentrations. The weekly mean NO2 values varied from 76 microg m(-3) in the north-eastern part of Bahrain island to 13 microg m(-3) in the south-east of Muharaq island. Generally, NO2 values decreased from the north to the south, where traffic volume and density also decreased. In addition, the results indicated that high traffic areas revealed higher NO2 levels compared with airport and industrial areas. The highest NO2 concentrations were measured in roads characterized by being narrow and confined, with many traffic lights and roundabouts, indicating the influence of road geometry on NO2 levels. The results provide valuable baseline information for future investigators, especially since the study was conducted at the start of the Gulf War, which was accompanied by substantial emissions of NO2 from jet fighters and burning of about 600 oil fields.  相似文献   

4.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

5.
A previous assessment of nitrogen loading to the Delaware Inland Bays indicates that atmospheric deposition provides 15-25% of the total, annual N input to these estuaries. A large and increasing fraction of the atmospheric wet flux is NH(4)(+), which for most aquatic organisms represents the most readily assimilated form of this nutrient. Particularly noteworthy is a 60% increase in the precipitation NH(4)(+) concentration at Lewes, DE over the past 20 years, which parallels the increase in poultry production on the Delmarva Peninsula over this period (currently standing at nearly 585 million birds annually). To further examine the relationship between local NH(3) emissions and deposition, biweekly-integrated gaseous NH(3) concentrations were determined using Ogawa passive samplers deployed at 13 sampling sites throughout the Inland Bays watershed over a one-year period. Annual mean concentrations at the 13 sites ranged from <0.5 microg NH(3)m(-3) to >6 microg NH(3)m(-3), with a mean of 1.6+/-1.0 microg NH(3)m(-3). At most sites, highest NH(3) concentrations were evident during spring and summer, when fertilizer application and poultry house ventilation rates are greatest, and seasonally elevated temperatures induce increased rates of microbial activity and volatilization from soils and animal wastes. The observed north-to-south concentration gradient across the watershed is consistent with the spatial distribution of poultry houses, as revealed by a GIS analysis of aerial photographs. Based on the average measured NH(3) concentration and published NH(3) deposition rates to water surfaces (5-8 mm s(-1)), the direct atmospheric deposition of gaseous NH(3) to the Inland Bays is 3.0-4.8 kg ha(-1)yr(-1). This input, not accounted for in previous assessments of atmospheric loading to the Inland Bays, would effectively double the estimated direct dry deposition rate, and is on par with the NO(3)(-) and NH(4)(+) wet fluxes. A second component of this study examined spatial differences in NO(3)(-) and NH(4)(+) wet deposition within the Inland Bays watershed. In a pilot study, precipitation composition at the Lewes NADP-AIRMoN site (DE 02) was compared with that at a satellite site established at Riverdale on the Indian River Estuary, approximately 21 km southwest. While the volume-weighted mean precipitation NO(3)(-) concentrations did not differ significantly between sites, the NH(4)(+) concentration observed at Riverdale (26.3 micromoles L(-1)) was 73% greater than at Lewes (15.2 micromoles L(-1)). More recently, a NADP site was established at Trap Pond, DE (DE 99), which was intentionally located within the region of intense poultry production. A comparison of the initial two years (6/2001-5/2003) of precipitation chemistry data from Trap Pond with other nearby NADP-AIRMoN sites (Lewes and Smith Island) reveals fairly homogeneous NO(3)(-) wet deposition, but significant spatial differences ( approximately 60%) in the NH(4)(+) wet flux. Overall, these results suggest that local emissions and below-cloud scavenging provide a significant contribution to regional atmospheric N deposition.  相似文献   

6.
Emission of NO(x) from urine-treated pasture was determined using a system of enclosures coupled to a chemiluminescence NO(x) analyser. Rates of emission ranged from 0 to 190 microg NO(x) - Nm(-2)h(-1), with a mean of 43 microg N m(-2) h(-1). The lowest rates were associated with periods of heavy or persistent rain. On average, NO comprised 68% of the NO(x) produced. Emissions of NO(x) were apparently associated with the nitrification of ammonium N derived from hydrolysis of organic N constituents in the urine applied. Emissions from untreated pasture occurred at a mean rate of 1.7 microg NO(x) -N m(-2) h(-1). NO(x) comprised only a small proportion (<0.1%) of the emission of other nitrogenous gases (NH(3), N(2) and N(2)O) following application of urine. The mean rate of NO(x) emission suggested a total release to the atmosphere of 2.3 x 10(-8) g N year(-1) from urine returned to pasture in the UK. This loss is not significant in agronomic terms and is equivalent to only 0.04% of the estimated anthropogenic emissions for the UK.  相似文献   

7.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

8.
A three-dimensional chemical transport model (PMCAMx) was used to investigate changes in fine particle (PM2.5) concentrations in response to changes in sulfur dioxide (SO2) and ammonia (NH3) emissions during July 2001 and January 2002 in the eastern United States. A uniform 50% reduction in SO2 emissions was predicted to produce an average decrease of PM2.5 concentrations by 26% during July but only 6% during January. A 50% reduction of NH3 emissions leads to an average 4 and 9% decrease in PM2.5 in July and January, respectively. During the summer, the highest concentration of sulfate is in South Indiana (12.8 microg x m(-3)), and the 50% reduction of SO2 emissions results in a 5.7 microg x m(-3) (44%) sulfate decrease over this area. During winter, the SO2 emissions reduction results in a 1.5 microg x m(-3) (29%) decrease of the peak sulfate levels (5.2 microg x m(-3)) over Southeast Georgia. The maximum nitrate and ammonium concentrations are predicted to be over the Midwest (1.9 (-3)g x m(-3) in Ohio and 5.3 microg x m(-3) in South Indiana, respectively) in the summer whereas in the winter these concentrations are higher over the Northeast (3 microg x m(-3) of nitrate in Connecticut and 2.7 microg x m(-3) of ammonium in New York). The 50% NH3 emissions reduction is more effective for controlling nitrate, compared with SO2 reductions, producing a 1.1 microg x m(-3) nitrate decrease over Ohio in July and a 1.2 microg x m(-3) decrease over Connecticut in January. Ammonium decreases significantly when either SO2 or NH3 emissions are decreased. However, the SO2 control strategy has better results in July when ammonium decreases, up to 2 microg x m(-3) (37%), are predicted in South Indiana. The NH3 control strategy has better results in January (ammonium decreases up to 0.4 microg x m(-3) in New York). The spatial and temporal characteristics of the effectiveness of these emission control strategies during the summer and winter seasons are discussed.  相似文献   

9.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

10.
A vertical snow-sampling method, where a sample was taken throughout the snowpack, was used to estimate the pollutant load on a roadside where average daily traffic density was about 9100 motor vehicles. The snow samples were collected at two sites, forest and open field, at two distances of 10 and 30 m from the road. The concentrations of inorganic anions (Cl(-), NO(-)(3), SO(2-)(4)), total N, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated phenols (PCPhs) were analysed. The results suggest that on roadsides there is a deposition caused by road traffic emissions and winter maintenance which exceeds normal background deposition. Inorganic anions mainly in particle form, originating from winter maintenance, are deposited near the road. PAHs with low molecular weight (相似文献   

11.
Diagnostic indicators of elevated nitrogen deposition   总被引:1,自引:0,他引:1  
Tissue N content of mosses, which has been shown to be an indicator of enhanced N, was studied at a range of locations dominated either by wet or dry deposited and oxidised and reduced forms of N. Tissue N responded differently to wet and dry deposited N. For a 1 kg ha(-1) y(-1) increase in N deposition, tissue N increased by 0.01% at wet deposition sites but by 0.03% at sites dominated by dry deposited NH3. Tissue N at wet deposition sites responded more to concentrations of NO3- and NH4+ in precipitation (r(2) 0.63) than to total N deposition (r(2) 0.27), concentration explaining 66% of the variation in tissue N, wet deposition 33%. The study clearly concludes that tissue N concentration in mosses provides a good indication of N deposition at sites where deposition is dominated by NH3, and is also valuable in identifying vegetation exposed to large concentrations of NH4+ or NO3-, in wet deposition dominated areas, such as hilltops and wind exposed woodland edges.  相似文献   

12.
Airborne ammonia and ammonium within the Northern Adriatic area, Croatia   总被引:1,自引:0,他引:1  
Determination of airborne ammonia started in the early 1980s, as a part of air pollution monitoring of industrial plants. Due to high emissions, the city of Rijeka was one of the most polluted in Croatia in the mid-1980s. Considerable reductions in SO2 and NO(x) emissions led to lower airborne levels of these pollutants in the mid 1990s. In spite of the coke plant closure in 1994, there was only a weak decline in airborne ammonia over the period 1980--2005, with annual means in the range of 12-20 microg m(-3) at urban Site 1 and 6-28 microg m(-3) at suburban Site 2. Similar behaviour has been observed with ammonium in bulk rainwater samples since 1996. Higher and approximately equal deposition of nitrogen as ammonium (N-NH4+) were obtained for the urban Site 1 and the mountainous Site 4, but with different causative facts. Ammonium's contribution to total nitrogen (NO3(-)+NH4+) deposition is approximately two thirds, even for a remote Site 3.  相似文献   

13.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

14.
Effects of traffic-related nitrogenous emissions on purple moor grass (Molinia caerulea (L.) Moench) transplants, used here as a new biomonitoring species, were assessed along 500 m long transects orthogonal to roads located in two open areas in the Maurienne valley (French Alps). Leaves were sampled during summer 2004 and 2005 for total N-content and 15N-abundance determination while nitrogen oxides (NO and NO2) concentrations were determined using passive diffusion samplers. A significant and negative correlation was observed between plant total N-content, and 15N-abundance and the logarithm of the distance to the road axis. The strongest decreases in plant N parameters were observed between 15 and 100 m from road axis. They were equivalent to background levels at a distance of about 800 m from the roads. In addition, motor vehicle pollution significantly affected vegetation at road edge, as was established from the relationship between leaf 15N-abundance, total N-content and road traffic densities.  相似文献   

15.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

16.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

17.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

18.
Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002 to 2006, policy actions have led to decreases in NO(x) emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates that these emissions reductions have led to a downward trend in ambient measurements of transported reactive nitrogen, especially atmospheric concentrations and wet deposition of nitrate. The trend in reduced nitrogen, namely ammonium, is ambiguous. As reduced nitrogen becomes a larger fraction of the reactive nitrogen budget, wide-spread NH(3) measurements and improved NH(3) emissions assessments are a critical need.  相似文献   

19.
20.
Effects and implications of reduced and oxidised N, applied under 'real world' conditions, since May 2002, are reported for Calluna growing on an ombrotrophic bog. Ammonia has been released from a 10 m line source generating monthly concentrations of 180-6 microg m(-3), while ammonium chloride and sodium nitrate are applied in rainwater at nitrate and ammonium concentrations below 4mM and providing up to 56 kg N ha(-1) year(-1) above a background deposition of 10 kg N ha(-1) year(-1). Ammonia concentrations, >8 microg m(-3) have significantly enhanced foliar N concentrations, increased sensitivity to drought, frost and winter desiccation, spring frost damage and increased the incidence of pathogen outbreaks. The mature Calluna bushes nearest the NH3 source have turned bleached and moribund. By comparison the Calluna receiving reduced and oxidised N in rain has shown no significant visible or stress related effects with no significant increase in N status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号