首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Investigations were made to assay the influence of vermicomposts, prepared from (i) cow dung (CD) and (ii) sugar mill wastewater treatment plant sludge spiked with horse dung, on the growth and productivity of marigold plants in pot culture experiments. The soil was used as potting media, and vermicomposts were amended with it in 10, 20, 30 and 40% ratio. A total of nine different potting media were prepared. The fertility status of soil and vermicomposts was quantified. There were significant differences in the fertilizer quality of soil and both the vermicomposts. Maximum numbers of flowers was produced in the potting media containing 30% of CD vermicompost and minimum was reported in control (soil without amendments). The diameter of biggest flower was reported in the potting media containing 40% of sugar mill wastewater treatment plant sludge vermicompost. Results showed that the addition of vermicompost, in appropriate quantities, to potting media has synergistic effects on growth and flowering of plants including number of buds, number of flowers, plant shoot biomass, root biomass, plant height and diameter of flowers.  相似文献   

2.
Selecting a material for biogas storage membranes is becoming increasingly vital because of the wide applications of biogas storage membranes in biogas plants. Material selection has numerous influencing factors, including gas permeability, strength, density, and so on. Among these, gas permeability has a vital role in biogas storage membranes. In this study, three kinds of biogas storage membranes with the same thickness were selected to investigate the effects of temperature (10, 20, 30, and 40°C) and relative humidity (RH; 0%, 50%, and 100%) on the permeability rate of biogas storage membranes. Results demonstrated that when various membrane samples with the same RH values were tested, temperature exhibited a strong effect on permeability rate. Kinetic analysis showed that the relationship between permeability and temperature agrees with the Arrhenius equation. However, no remarkable variation in methane permeability was observed for membranes with the same temperature but different RH values, thus suggesting that RH nearly has no obvious direct influence on the permeability rate of membranes.  相似文献   

3.
Alpine grassland of Tibet is a frangible ecosystem in terms of carbon (C) emission. Yak dung is an important resident energy with about 80 % of yak dung combusted for energy in the north Tibetan plateau. This paper investigated the impact of dung combustion on the C cycle of the alpine grassland ecosystem in north Tibet, China. During the growing season of 2011, from a field survey and household questionnaires, the main impacts of dung collection for fuel on the C cycle of the ecosystem were identified. (1) The C sequestration and storage capacity, including the dung-derived C stored in soil and C captured by vegetation, decreased. The net primary production decreased remarkably because of the reduction of dung returned to soil. (2) In a given period, more C was emitted to the atmosphere in the dung combustion situation than that in the dung returned to soil situation. (3) The energy grazing alpine meadow ecosystem changed into a net C source, and the net biome production of the ecosystem dropped to ?15.18 g C/m2 year in the dung combustion situation, 42.95 g C/m2 year less than that in the dung returned situation. To reduce the CO2 emission derived from dung use, the proportion of dung combustion should be reduced and alternative renewable energy such as solar, wind, or hydro energy should be advocated, which is suitable for, and accessible to, the north Tibetan plateau.  相似文献   

4.
Summary Quantitative studies on the biomethanation processes using a different biomass (goat dung, cow dung, buffalo dung, piggery waste, poultry waste and sewage) alone or in combination have been made. The dung samples have been found to be an efficient producer of biogas at a 1:2 dilution. Better yields of biogas are obtained in combination with other biomasses rather than when used alone. Judicious mixing of biomasses, however, is important. Competitive biomethanation of a biomass by other biomasses as a source for a wild population of microbes has been studied in vials using a cross-inoculation technique, i.e. using inoculum of one biomass on different sterile biomasses. The results show that the microbes are very specific and usually non-adaptive. Each inoculum outclasses others in using its natural biomass for methanation but reacts poorly when inoculated to other alien biomasses. Buffalo dung is to some extent adaptive in nature.Professor S.C. Lahiri is the senior author of this paper and he is ex-Head of the Department of Chemistry at the University of Kalyani where Nilanjan Chakravorty is a research fellow. Dr G.M. Sarkar is a senior lecturer in the Department of Botany at Ranaghat College, Ranaghat, Nadia, West Bengal, India.  相似文献   

5.
Recycling of plant materials and agricultural residues for biomethanation was attempted in vials. The methanogenic activities of certain sewage samples have also been tested. Both sterilized and non-sterilized biomasses were used. Biomethanation was carried out with dung samples (cow, goat, buffalo, piggery wastes and poultry wash) as wild populations of microbes and in combination with other microbial isolates (isolated in the laboratory).Biomethanation had been observed to be good in most cases and particularly with the sterilized biomass. Mixed inoculum (dung samples and poultry wash) was found to be best for biomethanation. Of the microbe isolates, isolates from buffalo, pig and paper mill wastes appear to be most effective. Pretreated sawdust and rice straw were found to be good subtrates for biomethanation. Of the different plant biomass used Spirogyra (algae), Ipomea and water hyacinth were most effective whereas Jatropa gossypifolia and Parthenium sp. were the least effective. Biomethanation of Spirogyra was carried out both in anoxic and oxic conditions. Though methane production decreased enormously under oxic conditions, definite methane production continued indicating that the biomethanation process is not exclusively anoxic. Similarly, biomethanation of sewage samples from different sewage treatment plants were carried out with and without isolated methanogens and methane production was found to be moderate.  相似文献   

6.
Gaseous emissions from animal manure storage facilities can contribute to global greenhouse gas inventories. Biogas fluxes were measured for one year from a 2-ha anaerobic lagoon that received waste from a 10500-head swine (Sus scrofa) finishing operation in southwestern Kansas. During 2001, ebullition of biogas was measured continuously by using floating platforms equipped with gas-collection domes. Periodically, the composition of the biogas was determined by using gas chromatography. Detailed records of feed quality and quantity and animal weights and gains also were obtained to determine the carbon budget of the facility (barns and lagoon). Flux of biogas was very seasonal, with peak emission (18.7 mol m(-2) d(-1)) occurring in early June. Nearly 50% of the annual biogas losses occurred during a 30-d period beginning on day of year (DOY) 146. Flux patterns suggest that the start of the high biogas production period was governed by temperature, while the decline in production in mid-June was caused by substrate limitations. Average biogas composition was 0.71 L CH4 L(-1). The quantity of CH4 released from the lagoon was 86.3 Mg yr(-1), which represents about 38 g of CH4 per kg of animal weight gain. The average flux density of biogas from the lagoon was 382 mol m(-2) yr(-1) or 728 mol yr(-1) per resident animal where the resident animal population was 10500. Flux rates of CH4 were 1.7 to 3.4 times less than predictions made with Intergovernmental Panel on Climate Change (IPCC) models. Additional research is needed on the carbon budgets of other animal feeding operations so that better estimates of greenhouse gas emissions can be determined.  相似文献   

7.
Biogas production from anaerobic digestion has increased rapidly in the last years, in many parts of the world, mainly due to its local scale disposition and to its potential on greenhouse gases (GHG) emissions mitigation. Biogas can be used as fuel for combined heat and power systems (CHP), in particular for internal combustion engines (ICEs). In recent investigations, fuel cells have been considered as alternative CHP systems. In the present article, two different energy conversion systems are compared: a 1.4 MW class MCFC system, running on pipeline natural gas, and an in situ ICE, running on biogas. In the first case, biogas is considered as a source fuel to obtain upgraded gas to be injected in the natural gas grid. In such scenario, the location of the fuel cell power plant is no longer strictly connected to the anaerobic digester site. Several energy balances are evaluated, considering different upgrading techniques and different biogas methane/carbon dioxide ratios.  相似文献   

8.
Distillery effluent can be converted into biogas and the residue can be utilized as a fertilizer if it is detoxified. Several nitrifying bacteria were screened for detoxification of distillery effluent rich in chloride, nitrogen compounds, free ammonia and monovalent cations. Nitrosococcus oceanus collected from a brackish water lake (Chilka, Orrisa) was noticed to be a potential candidate for detoxification of distillery effluent. The detoxified distillery effluent was used in rice plant culture. The growth and development of rice plants was examined in terms of DCPIP—Hill activity, total carbohydrate, total protein and biomass of rice plants. The detoxified effluent-treated rice plants showed better growth and development as compared with control plant grown in full nutrient solution (Hoagland solution).  相似文献   

9.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   

10.
Data on the quantity (27 453 tons from litter-free reared animals in Bulgaria, only) and the chemical and energy characteristics of dung produced in intensive management farms for domestic animals suggests that technologies combining biogenic elements recycling with energy utilistation and dung decontamination are expedient to be applied on these types of farms. To this effect a fermenter was designed and a mathematical model (a Chen-Hashimoto model based computer programme) was applied, as a result of which the optimum methane fermentation parameters were determined. The technological methane output (Yv) — indicator of biogas production efficiency (output/dm3 fermentor volume) showed an optimum at temperature 55°C and period of exchange 6 days. The methane output per unit mineralised organic matter in the substrate (B) — assumed as an indicator of ecological efficiency (maximum organic matter degradation) exhibited an optimum at 33°C for 15 days period of exchange.  相似文献   

11.
We compare calculated greenhouse gas emissions for a North American beef feedlot operation, which includes biogas production by anaerobic digestion with subsequent electricity generation (the AD case), to the emissions for a “business as usual” case, which includes both a feedlot and an equivalent amount of grid-generated electricity. Anaerobic digestion, biogas production and electricity production are the major sources of differences in emissions. Fertilizer production, crop production, manure collection and spreading, as well as the associated transport stages are also considered within the LCA system boundaries; impacts on life cycle emissions from these sources are lower. Running a feedlot and producing electricity using typical grid power plants produces 3,845 kg CO2?eq/MWh while running a feedlot, which generates biogas to produce electricity, produces 2,965 kg CO2?eq/MWh. This savings of 880 kg CO2?eq/MWh arises because the net power generation in the AD case emits about 90% less life cycle GHG emissions compared to grid-average electricity. The high overall emission levels arise due to emissions associated with enteric fermentation in beef cattle as the main source of GHG emissions in both the “business as usual” and the AD cases. It contributed 57% of total emissions for the feedlot /biogas /electricity system and 44% of total emissions for the feedlot /grid electricity system.  相似文献   

12.
In order to obtain the characteristics of anaerobic fermentation with different parts of corn stalks at low concentrations, air-dried corn stalks stem bark (SB), stem pith (SP), leaves (L), and corn stalks (CS) were, respectively, mixed with cow dung to perform fermentation at the temperature of 35 oC and carbon-to-nitrogen ratio (C/N) of 25. Mixed with cow dung compost, the fermentation broths were adjusted to a neutral pH value. Along with the enhancing of the total solid (TS) content of SB, SP, L, and CS fermentation broths, both of the daily biogas yields and methane contents increased under the same fermentation condition, except for Sample TS 6% of L. The optimal TS content of SB, SP, L, and CS broth is 8%, 5%, 10%, and 8%, separately. In 35 days, the highest methane yield of SB, SP, L, and CS broth was 125.0 mL/(volatile solid) VS g, 115.3 mL/VS g, 109.7 mL/VS g, and 80.0 mL/VS g, respectively, and the potential of methane transformation production of broth ranks as: SB> L> SP> CS. Daily methane producing rate of SB, SP, and L broth are faster than that of CS. It is necessary to separate the corn stalks into different parts to ferment because the optimal fermentation concentrations for the different parts are different. Additionally, the Gompertz equation was also adopted to simulate the anaerobic digestion process of different materials. The Gompertz equation fitting parameters show that the biodegradation (from easy to difficult) was: L < SP < SB < CS.  相似文献   

13.
In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 € Nm−3) of the volume of biogas of Mixture A dropped to 0.18 € Nm−3. Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were −0.20 and 0.11 € Nm−3, respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was −0.09 € Nm−3. By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.  相似文献   

14.
Nutrients exported from grazing systems contribute to eutrophication of surface waters. In this study the contributions of soil, pasture-plants, and dung to P exports in overland flow were compared using simulated rainfall. The treatments were (i) grazed pasture-plants (isolated from soil by application of petrolatum to the soil surface), (ii) grazed pasture-plants and supporting soil, (iii) grazed pasture-plants and soil and treading, and (iv) grazed pasture-plants and soil and treading and dung. In general, dissolved reactive P (DRP) accounted for the majority of the P exported and P losses decreased in the order: treading and dung treatment>treading>pasture-plants and soil>pasture-plants. Very little dissolved organic P was lost in overland flow and the effects of treading diminished with time. Over a normal grazing cycle (30 d), the portion of P lost from pasture-plants was approximately half that lost from pasture-plants and soil, one-third that lost from treaded pasture-plants and soil, and one-quarter that lost from treaded pasture-plants, soil, and dung. The DRP in the pasture-plants treatment was approximately half that in the pasture-plants and soil treatment and suggests that a significant portion of the P exported from these systems is derived directly from pasture-plants. Due to higher proportions of particulate P (PP) in the treaded and dung treatments, DRP accounted for less of total P than in the pasture-plants and pasture-plants and soil treatments. Lower infiltration capacities probably caused by mechanical disaggregation at the soil surface are consistent with the higher proportions of PP in the treading treatments. These results were used to estimate P exports from a field trial site in Southland, New Zealand. The results suggested that P export attributable to fertilizer, dung, pasture-plants, and soil components were approximately 10, 30, 20, and 40%, respectively. These results suggest that since 90% of the P exports are derived from the soil-plant system and dung returns, managements to lessen P exports should continue to focus on maintaining soil P within the optimal range for pasture-plant production and maintaining soil surface properties that maximize infiltration and minimize overland flow.  相似文献   

15.
Knowledge of phosphorus (P) fractions in dung of animals (dairy cattle, deer, sheep) grazing pasture is important for soil fertility and the potential for P transport in runoff and subsequent surface water quality deterioration. We used sequential fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy to determine P forms in fresh and air-dried (to simulate field conditions during grazing) dung. Sheep dung was richest in P (8 g kg(-1)), and cattle dung poorest (5.5 g kg(-1)). Data for sequential fractionation indicated that most P was extractable by water (15-36%) and bicarbonate (36-45%) in fresh dung, and shifted toward recalcitrant, HCl (12-28%), and residual P forms (15-31%) with drying. Organic P concentration in dung was poor (maximum of 15% of total P), probably due to the poor concentration of phytate in pasture. The 31P NMR spectra of NaOH-EDTA extracts supported this by detecting a low concentration of monoesters (9-19% of total P in extracts), of which phytate is a major component. The 31P NMR data also showed that changes in organic P concentration with drying could be due to the degradation of diesters. Data indicate the decreasing bioavailability of dairy cattle, deer, and sheep dung with drying and the need to consider this effect with respect to P returns for soil fertility and the potential for runoff.  相似文献   

16.
Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.  相似文献   

17.
Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.  相似文献   

18.
Among the various configurations of fossil fuel power plants with carbon capture, this paper focuses on pre-combustion techniques applied to natural gas combined cycles. With more detail, the plant configuration here addressed includes: (i) the steam reforming of natural gas, based on an air-blown autothermal process, following a recuperative pre-reforming treatment, (ii) the water gas shift producing CO2 and H2, (iii) the separation of CO2 by means of a mixed physical–chemical absorption system using a MDEA solution, and (iv) a hydrogen fuelled combined cycle.Similar configurations have been studied quite extensively, being among the most attractive for full-scale realizations in a near-mid term future. This paper proposes a detailed thermodynamic study and optimization of the plant configuration, bringing to a reliable performance estimation based on today's best available technology as far as the various plant sections are concerned (gas and steam turbine, natural gas reforming process, CO2 separation). The predicted LHV efficiency for the base configuration is about 50%. Being this value at the top of the range quoted in the open literature studies (35–50%), the paper includes a quite extensive sensitivity analysis, showing that more conservative assumptions may bring to significantly poorer performance, especially considering the pretty large number of operating parameters involved in the process.  相似文献   

19.
Hydrilla (Hydrilla verticillata) is one of the world’s most problematic invasive aquatic plants. Although management of hydrilla overgrowth has often been based on use of chemical herbicides, issues such as the emergence of herbicide-resistant hydrilla biotypes and the need for in situ nutrient remediation strategies have together raised interest in the use of harvester machines as an alternative management approach. Using a life cycle assessment (LCA) approach, we calculated a range of net energy and economic benefits associated with hydrilla harvests and the utilization of biomass for biogas and compost production. Base case scenarios that used moderate data assumptions showed net energy benefit ratios (NEBRs) of 1.54 for biogas production and 1.32 for compost production pathways. NEBRs for these respective pathways rose to 2.11 and 2.68 when labor was excluded as a fossil fuel input. Base case biogas and compost production scenarios respectively showed a monetary benefit cost ratio (BCR) of 1.79 and 1.83. Moreover, very high NEBRs (3.94 for biogas; 6.37 for compost) and BCRs (>11 for both biogas and compost) were found for optimistic scenarios in which waterways were assumed to have high hydrilla biomass density, high nutrient content in biomass, and high priority for nutrient remediation. Energy and economic returns were largely decoupled, with biogas and fertilizer providing the bulk of output energy, while nutrient remediation and herbicide avoidance dominated the economic output calculations. Based on these results, we conclude that hydrilla harvest is likely a suitable and cost-effective management program for many nutrient-impaired waters. Additional research is needed to determine how hydrilla harvesting programs may be most effectively implemented in conjunction with fish and wildlife enhancement objectives.  相似文献   

20.
This study was performed to investigate mercury (Hg) tolerance, accumulation, and translocation within the genus Salix for the potential use of this plant to remediate Hg-contaminated sites. Six clones of willow (Salix spp.) were tested on tolerance to Hg by treating plants grown in solution culture with 0 to 15 microM HgCl(2). Results showed that willow had a large variation in its sensitivity to Hg. However, the accumulation and translocation of Hg to shoots was similar in the eight tested willow clones as shown by cold vapor atomic absorption spectrometry analysis when plants were treated with 0.5 microM HgCl(2) in a nutrient solution. The majority of total Hg accumulated was localized to the roots, whereas only 0.45 to 0.62% of the total Hg accumulated via roots was translocated to the shoots. Thus, the root system is the main tissue of willow that accumulates Hg and the majority of the Hg in the root system (80%) was bound in the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号