首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mercury is a widely distributed environmental pollutant, able to induce toxicity in living organisms, including higher plants. Some plant species are able to grow in mine sites, like the Almadén zone in Spain. Our study focus on two of these plant species, Rumex induratus and Marrubium vulgare and their responses to natural Hg exposure. Total Hg concentration in the soil below the plants could be classified as toxic, although the available fraction was low. Hg availability was higher for the M. vulgare than for the R. induratus plot. Hg concentrations in field plants of R. induratus and M. vulgare grown on these soils can be considered as phytotoxic, although no symptoms of Hg toxicity were observed in any of them. According to the BAF ([Hg]tissue/[Hg]avail), R. induratus showed a higher ability in Hg uptake and translocation to shoots, as well as higher concentrations of MDA and –SH:Hg ratios, so that this plant is more sensitive to Hg than M. vulgare. The resistance to Hg and the capability to extract Hg from the soil make both M. vulgare and R. induratus good candidates for Hg phytoremediation of contaminated soils.  相似文献   

2.
Total Hg and methyl-Hg were evaluated in mine wastes, soils, water, and vegetations from the Wuchuan Hg-mining areas, Guizhou, China. Mine wastes contain high total Hg concentrations, ranging from 79 to 710 microg g(-1), and methyl-Hg from 0.32 to 3.9 ng g(-1). Total Hg in soil samples range from 0.33 to 320 microg g(-1) and methyl-Hg from 0.69 to 20 ng g(-1). Vegetations present a high average total Hg concentration of 260 ng g(-1), which greatly exceeds the maximum Hg concentration of 20 ng g(-1) recommended by the Chinese National Standard Agency for food sources. The rice samples contain elevated methyl-Hg concentrations, ranging from 4.2 to 18 ng g(-1). Stream water collected from Hg-mining areas is also contaminated, containing Hg as high as 360 ng l(-1), and methyl-Hg reaches up to 5.7 ng l(-1). Data indicate heavy Hg-contaminations and significant conversion of methyl-Hg in the study areas.  相似文献   

3.
Eapen S  Singh S  Thorat V  Kaushik CP  Raj K  D'Souza SF 《Chemosphere》2006,65(11):2071-2073
Potential of plants to remove radionuclides/toxic elements from soils and solutions can be successfully applied for removal of important radionuclides such as strontium-90 (90Sr) and cesium-137 (137Cs). When uptake of 137Cs and 90Sr by Calotropis gigantea plants incubated in distilled water spiked with the radionuclides either alone or in combination was studied, it was found to have a high efficiency for the removal of 90Sr, with 90% being removed from solutions (5 × 103 kBq l−1) within 24 h of incubation. However, in case of 137Cs, about 44% could be removed from solutions (5 × 103 kBq l−1) at the end of 168 h of incubation. Accumulation of 90Sr and 137Cs was higher in roots compared to shoots. The plants could remediate both 90Sr and 137Cs when they were added together to the solution. When two months old plants were incubated in low level nuclear waste, 99% of activity disappeared at the end of 15 days. The present study suggests that C. gigantea could be used as a potential candidate plant for phytoremediation of 90Sr and 137Cs.  相似文献   

4.
Experiments were carried out in plant growth chambers and in the field to investigate plant-mercury accumulation and volatilisation in the presence of thiosulphate (S2O3)-containing solutions. Brassica juncea (Indian mustard) plants grown in Hg-contaminated Tui mine tailings (New Zealand) were enclosed in gastight volatilisation chambers to investigate the effect of ammonium thiosulphate ([NH4]2 S2O3) on the plant-Hg volatilisation process. Application of (NH4)2 S2O3 to substrates increased up to 6 times the Hg concentration in shoots and roots of B. juncea relative to controls. Volatilisation rates were significantly higher in plants irrigated only with water (control) when compared to plants treated with (NH4)2 S2O3. Volatilisation from barren pots (without plants) indicated that Hg in tailings is subject to biological and photochemical reactions. Addition of sodium thiosulphate (Na2S2O3) at 5 g/kg of substrate to B. juncea plants grown at the Tui mine site confirmed the plant growth chambers studies showing the effectiveness of thio-solutions at enhancing shoot Hg concentrations. Mercury extraction from the field plots yielded a maximum value of 25 g/ha. Mass balance studies revealed that volatilisation is a dominant pathway for Hg removal from the Tui mine site. A preliminary assessment of the risks of volatilisation indicated that enhanced Hg emissions by plants would not harm the local population and the regional environment.  相似文献   

5.
The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans.  相似文献   

6.
Accumulation of total and methyl-Hg by mushrooms and earthworms was studied in thirty-four natural forest soils strongly varying in soil physico-chemical characteristics. Tissue Hg concentrations of both receptors did hardly correlate with Hg concentrations in soil. Both total and methyl-Hg concentrations in tissues were species-specific and dependent on the ecological groups of receptor. Methyl-Hg was low accounting for less than 5 and 8% of total Hg in tissues of mushrooms and earthworms, respectively, but with four times higher concentrations in earthworms than mushrooms. Total Hg concentrations in mushrooms averaged 0.96 mg Hg kg−1 dw whereas litter decomposing mushrooms showed highest total Hg and methyl-Hg concentrations. Earthworms contained similar Hg concentrations (1.04 mg Hg kg−1 dw) whereas endogeic earthworms accumulated highest amounts of Hg and methyl-Hg.  相似文献   

7.
Six plant species in the family Gramineae were used to investigate the relationship between Cs uptake, nutrient regime and plant growth strategy sensu Grime (1979: Plant Growth Strategies and Vegetation Processes, John Wiley). The roots of 66 day old Elymus repens (L.) Gould., Bromus sterilis L., Agrostis stolonifera L., Anthoxanthum odoratum L., Festuca ovina L. and Nardus stricta L. plants grown in acid-washed sand at high and low nutrient levels were exposed to a 96 h pulse of stable Cs at 0.05 mM, 0.15 mM, 0.3 mM, 1.0 mM and 3.0 mM concentrations. Different nutrient regimes induced large differences in dry wt in E. repens, B. sterilis and A. stolonifera plants but only small differences in N. stricta and F. ovina plants. At high nutrient concentrations, A. stolonifera, A. odoratum, F. ovina and N. stricta shoots showed significantly greater increases in internal Cs concentration with rising external Cs concentrations than did E. repens and B. sterilis shoots. The relationship between increases in shoot and external Cs concentrations was statistically indistinguishable between species in plants grown at the low nutrient concentration. These patterns of Cs uptake ensured that with long-term high K concentrations the more competitive plants (E. repens and B. sterilis) accumulated higher concentrations of Cs from low external concentrations than did non-competitive plants or competitive plants grown at low nutrient levels. It is suggested that the relationship between plant growth strategy sensu Grime (1979) and Cs accumulation patterns may help to explain the different concentrations to which species accumulate radiocaesium from the soil.  相似文献   

8.
Almås AR  Lombnaes P  Sogn TA  Mulder J 《Chemosphere》2006,62(10):1647-1655
A pot experiment was carried out to investigate the impact of Cd and Zn extractability in soil and speciation in pore water of industrial contaminated soils, on metal concentration in a metal sensitive species like spinach (Spinacia oleracea) and a more metal tolerant species like Italian ryegrass (Lolium multiflorum). For chemical speciation of Cd and Zn in pore water, WHAM/Model VI version 6.0 was used. The DGT technique was used to determine the effective concentration, C(E), of Cd and Zn in soils. The free ion activity in pore water correlated well with the contents in plants, and there was a linear relationship between the C(E) values and the concentration of Cd and Zn in both spinach and ryegrass in the non-toxic range. However, the C(E) values usually overestimated the plant contents when plants, particularly the spinach plants, were subjected to toxic concentration in the pore water. Metal uptake decreased in plants affected by toxicity, whereas metal binding to the Chelex resin did not. Thus, we found no linear relationship between the C(E) and metal contents in spinach, whereas a linear relationship was found between C(E)-Zn and the Zn concentration in ryegrass (r2=0.96, p<0.001). For Cd in ryegrass this relationship was weak (r2=0.53, p=0.18). This study indicates that the transport of metals from labile metal pools to the DGT-resin is linearly related to plant uptake only when plants are growing well, and that the applicability of DGT as an indicator for plant uptake seems species dependent.  相似文献   

9.
Phytoextraction of excess soil phosphorus   总被引:1,自引:0,他引:1  
In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species.  相似文献   

10.
Mustard spinach plants were grown in mercury-spiked and contaminated soils collected in the field under controlled laboratory conditions over a full growth cycle to test if vegetation grown in these soils has discernible characteristics in visible/near-infrared (VNIR) spectra. Foliar Hg concentrations (0.174-3.993ppm) of the Mustard spinach plants were positively correlated with Hg concentration of soils and varied throughout the growing season. Equations relating foliar Hg concentration to spectral reflectance, its first derivative, and selected vegetation indices were generated using stepwise multiple linear regression. Significant correlations are found for limited wavelengths for specific treatments and dates. Ratio Vegetation Index (RVI) and Red Edge Position (REP) values of plants in Hg-spiked and field-contaminated soils are significantly lower relative to control plants during the early and middle portions of the growth cycle which may be related to lower chlorophyll abundance or functioning in Hg-contaminated plants.  相似文献   

11.
Fritioff A  Greger M 《Chemosphere》2007,67(2):365-375
Elodea canadensis is a submersed macrophytes, widely distributed in stormwater treatment ponds and able to remove heavy metals from water. This study examines the Cd uptake, translocation, and efflux patterns in Elodea. Several experiments were set up in a climate chamber. To study the root and shoot Cd uptake, living and dead roots and shoots were treated with (109)Cd in one- and two-compartment systems. Furthermore, to examine Cd translocation and distribution, either roots or shoots were treated with (109)Cd. Finally, the efflux of Cd from roots and shoots, respectively, to the external solution was studied after loading whole plants with (109)Cd. Results from the two compartment studies show that Cd is accumulated via direct uptake by both roots and shoots of Elodea. The Cd accumulation proved not to be metabolically dependent in Elodea, and the apoplastic uptake in particular was decreased by Cd pretreatment. In one week, up to 23% of the root uptake was translocated to the shoots, while about 2% of the Cd accumulated by shoots was translocated to the roots. Thus, slight dispersion of Cd is possible, while metal immobilization will not be directly mediated via the Elodea plant. The efflux experiment proved that both shoots of dead plants and roots of living plants had a faster efflux than did shoots of living plants. This information is relevant for an understanding of the fate of Cd in stormwater treatment ponds with Elodea.  相似文献   

12.
Spinach plants were grown in soil pots contaminated with increasing mixtures of lead, mercury, cadmium, and nickel salts. Plants in the control soil were grown in the absence of the heavy metals mixture. The elemental distribution of Cd, Ni, Pb, and Hg in the roots and leaves of Spinach (Spinacia Oleracea) was determined in two stages, Stage 1, after five weeks of plant growth and Stage 2, after 10 weeks with full growth. Under the influence of contamination of soil with the heavy metal mixtures, Hg was the most accumulated element in the root of the spinach plant with a concentration of 283 ppm recorded in the highest contaminated soil, followed by Cd at 148 ppm.  相似文献   

13.
Mobility of antimony in soil and its availability to plants   总被引:3,自引:0,他引:3  
Hammel W  Debus R  Steubing L 《Chemosphere》2000,41(11):1791-1798
In a historical mining area residual material has been filled on land and these locations are used today as agricultural soils or house gardens. The antimony concentrations in these soils are up to 500 mg/kg. Antimony transfer into 19 vegetable and crop species was investigated. In grain and other storage organs up to 0.09 mg Sb/kg were found, whereas maximum antimony concentrations in shoots and leaves were determined to be 0.34 mg Sb/kg and 2.2 mg Sb/kg, respectively. Despite the high antimony contamination of the soils, concentrations in the investigated plants in general corresponded to concentrations only reported for uncontaminated soils. NH4NO3 extraction of some of the soils indicated that the mobile fraction of antimony present was only 0.06-0.59%. In contrast, in leaves of spinach grown under controlled conditions in soils with a high mobile antimony content an accumulation of the element could be observed: a maximum value of 399 mg Sb/kg was detected, and a correlation between the mobile fraction in the soils and antimony in leaves was found.  相似文献   

14.
Su YH  Zhu YG  Lin AJ  Zhang XH 《Chemosphere》2005,60(6):802-809
The uptake of atrazine by rice seedlings (Oryza sativa L.) through plant roots from nutrient solution was investigated in the presence and absence of Cd2+ over an exposure period of four weeks. It was found that both atrazine and Cd2+ were toxic to rice seedlings. Both shoot and root biomasses decreased when the seedlings were exposed to increasing atrazine or Cd2+ concentrations in nutrient solutions. In the absence of Cd2+, a linear relationship was observed between atrazine concentrations in roots/shoots and in external solution, and more atrazine is concentrated in roots than in shoots. When atrazine and Cd2+ concentrations in solution were maintained at mole ratio of 1:1, the accumulation of atrazine by seedlings was less and the seedling biomass was greater than found with other ratios, such as 1:2 or 2:1. Therefore, the formation of the complex between atrazine and Cd2+ reduced the individual toxicities. Analyses of data with the quasi-equilibrium partition model indicated that the atrazine concentrations in rice seedlings and external water were close to equilibrium. In the presence of Cd2+, however, the measured bioconcentration factor (BCF) of atrazine with roots and shoots were considerably greater. The latter findings resulted presumably from the atrazine-Cd2+ complex formation that led to a large apparent BCF.  相似文献   

15.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

16.
As part of their tailings management, the oil sand industries plan on producing consolidated (composite) tailings (CT), in which an inorganic coagulant aid (gypsum) is added to create a non-segregating deposit. The water associated with this treatment contains potentially phytotoxic levels of sodium, sulfate, chloride, boron, aluminum, fluoride and strontium. Since CT water is expected to saturate deposits in the reclamation areas, it may affect successful reclamation of these sites. Red-osier dogwood (Cornus stolonifera Michx) was demonstrated to be relatively salt resistant and to have high potential for the reclamation of mining areas. In the present study, we used red-osier dogwood to examine the effects of CT water on the accumulation of ions within plant tissue, growth, gas exchange, water potentials and chlorophyll concentration. CT water reduced shoot lengths and dry weights in treated plants. The roots of treated plants accumulated higher concentrations of sodium and chloride than did shoots. The accumulation of sodium and chloride was accompanied by an increase in magnesium and calcium and a decrease in potassium in the roots, while the levels of potassium increased in the leaves. CT water altered gas exchange and water potentials in seedlings, and resulted in a decrease in chlorophyll's a and b. The results suggest that the mechanisms of salt resistance in red-osier dogwood seedlings involve the restriction of sodium transport from roots to shoots.  相似文献   

17.
Bonzongo JC  Donkor AK 《Chemosphere》2003,52(8):1263-1273
In the past two decades, a great deal of attention has been paid to the environmental fate of mercury (Hg), and this is exemplified by the growing number of international conferences devoted uniquely to Hg cycling and its impacts on ecosystem functions and life. This interest in the biogeochemistry of Hg has resulted in a significant improvement of our understanding of its impact on the environment and human health. However, both past and current research, have been primarily oriented toward the study of direct impact of anthropogenic activities on Hg cycling. Besides a few indirect effects such as the increase in Hg methylation observed in acid-rain impacted aquatic systems or the reported enhanced Hg bioaccumulation in newly flooded water reservoirs; changes in Hg transformations/fluxes that may be related to global change have received little attention. A case in point is the depletion of stratospheric ozone and the resulting increase in solar UV-radiation reaching the Earth. This review and critical discussion suggest that increasing UV-B radiation at earth's surface could have a significant and complex impact on Hg cycling including effects on Hg volatilization (photo-reduction), solubilization (photo-oxidation), methyl-Hg demethylation, and Hg methylation. Therefore, this paper is written to provoke discussions, and more importantly, to stimulate research on potential impacts of incoming solar UV-radiation on global Hg fluxes and any toxicity aspects of Hg that may become exacerbated by UV-radiation.  相似文献   

18.
The comparative experimental study of inorganic mercury (HgII), methylmercury (MeHg) and cadmium (Cd) bioaccumulation in the Asiatic clam Corbicula fluminea was based on a 14 days' exposure to the water column or sediment compartments, as initial contamination sources. For each contaminant and exposure source, a five-point concentration range was set up in order to quantify the relationships between the contamination pressure and bioaccumulation capacity, at the whole soft body level and in five organs: gills, mantle, visceral mass, kidney and foot. Hg and Cd bioaccumulation at the whole organism level was proportional to the metal concentrations in the water column or sediment. For similar exposure conditions, the average ratios between the metal concentrations in the bivalves - [MeHg]/[HgII] and [MeHg]/[Cd] - were close to 10 and 5 for the sediment source and 8 and 15 for the water column source. Metal distribution in the five organs revealed strong specificities, according to the different contamination modalities studied: kidney and gills were clearly associated with Cd exposure, mantle and foot with MeHg exposure and the visceral mass with inorganic Hg exposure.  相似文献   

19.
Bioaccumulation and physiological effects of mercury in Sesbania drummondii   总被引:1,自引:0,他引:1  
Israr M  Sahi S  Datta R  Sarkar D 《Chemosphere》2006,65(4):591-598
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.  相似文献   

20.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号