首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chiral herbicides may have enantioselective effects on plants. In this study, we assessed and compared the enantioselectivity of the chiral herbicides rac-metolachlor and S-metolachlor to maize seedlings. The superoxide dismutase activity (SOD) activity of roots and stem leaves treated by rac-metolachlor was 1.38 and 1.99 times that of roots and stem leaves treated by S-metolachlor. The peroxidase activity (POD) activity of roots and stem leaves was 1.48 and 2.79 times that of roots and stem leaves treated by S-metolachlor, respectively, while the catalase activity (CAT) activity was 4.77 and 8.37 times greater, respectively. The Hill reaction activity of leaves treated by rac-metolachlor were 1.45, 1.33, and 1.14 times those treated by S-metolachlor with treatments of 18.6, 37.2, and 74.4 μM. The differences observed between treatments of rac- and S-metolachlor were significant. Significant differences in maize seedling morphology were also observed between rac- and S-metolachlor treatments. The degradation rate of S-metolachlor in roots was greater than that of rac-metolachlor. The half-lives of rac- and S-metolachlor were 80.6 and 60.3 h at 18.6 μM; 119.5 and 90 h at 37.2 μM; and 169 and 164.8 h at 74.4 μM, respectively. Using the liquid chromatography-mass spectrometry method, hydroxymetolachlor, deschlorometolachlor and deschlorometolachlor propanol were considered to be possible metabolites. We determined the enantioselective toxicity of rac- and S-metolachlor to maize and speculated on the proposed metabolic pathway of metolachlor in maize roots. These results will help to develop an understanding of the proper application of rac- and S-metolachlor in crops, and give some information for environmental safety evaluation of rac- and S-metolachlor.  相似文献   

2.
The toxicity of Rac-metolachlor and S-metolachlor on rice (IIYou92, Oryza sativa L.) seedlings was determined and compared in a hydroponics experiment. The elongation of shoot, main root, and the number of lateral roots were inhibited in both Rac- and S-metolachlor treatments. The 96 h- IC50 of Rac- and S-metolachlor were 12.32 and 9.44 μM for shoot, and 4.69 and 1.75 μM for root, respectively. The content of chlorophyll a, chlorophyll b and total chlorophyll of leaf treated by Rac-metolachlor was higher than that treated by S-metolachlor. The activities of superoxide dismutase, peroxidase, cytochrome P450 2E1, glutathione S-transferase, and the content of glutathione increased after herbicide exposure, and the activities or the content was higher in the S-metolachlor treatment than in the exposure to Rac-metolachlor. Ultrastructural studies revealed that Rac- and S-metolachlor had adverse effects on leaf cells, and S-metolachlor treatment caused higher damage.  相似文献   

3.
Abstract

Information regarding the enantioselective endocrine disruption of chiral herbicides is scarce. This study assessed the disrupting effects of eight typical chiral herbicides on corticosteroids (including glucocorticoids and mineralocorticoids). Enantioselectivity of eight chiral herbicides were evaluated for their agonistic/antagonistic effects on glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) with CHOK1 cell line using reporter gene assay. Their influence on the production of corticosteroids were further investigated in H295R cell line using enzyme-linked immunosorbent assay (ELISA). None of the racemates or enantiomers of eight chiral herbicides exhibited GR or MR agonistic activity at non-cytotoxic concentrations. However, rac-propisochlor and S-imazamox antagonized cortisol-induced transactivation of GR by 21.79% and 38.73% at the concentration of 1.0?×?10?7 M and 1.0?×?10?6 M, respectively, and R-napropamide remarkably attenuated aldosterone-induced MR transactivation by 68.78% at 1.0?×?10?6 M. The secretion of cortisol was significantly restrained after treated with 1.0?×?10?6 M rac-propisochlor and rac-/R-napropamide at the concentration of 1.0?×?10?6 M by 26.49%, 30.10% and 35.27%, respectively, while this glucocorticoid was remarkably induced by 1.0?×?10?5 M rac-diclofop-methyl and its two enantiomers at the concentration of 1.0?×?10?5 M by 75.60%, 100.1% and 68.78%, respectively. Exposure to rac-propisochlor (1.0?×?10?6 M), S-diclofop-methyl (1.0?×?10?5 M) or rac-/S-/R- acetochlor (1.0?×?10?6 M) and rac-/S-/R-lactofen (1.0?×?10?6 M) inhibited the secretion of aldosterone by approximately 40%. Our findings suggested that chiral herbicides disrupted corticosteroid homeostasis in an enantioselective way. Therefore, more comprehensive screening is required to better understand the ecological and health risks of chiral pesticides.  相似文献   

4.
In streams and creeks, the aquatic flora is exposed to fluctuating concentrations of herbicides during and following their application. Peak concentrations of herbicides, like the chloroacetanilide S-metolachlor, are usually detected following rain events. In this study, we assessed the effect of S-metolachlor pulse exposure on the algae Scenedesmus vacuolatus. We measured the time-dependency of effects during exposure on algae population and identified the algae development stage most sensitive to S-metolachlor. Furthermore, we assessed the time-to-recovery of the algae following exposure. A 6h pulse exposure at 598mugl(-1) was sufficient to inhibit cell reproduction by 50%. However, the exposure period had to coincide with the cell development stage specifically inhibited by S-metolachlor, which is the end of the cell growth phase. In algae populations composed of cells at all development stages, we initially observed an increase in the size of some algal cells, ultimately leading to an inhibition of the growth rate. In these experimental conditions, effects were observed after 18h of exposure and greatly increased with time. The recovery of algae following exposure to strongly inhibiting S-metolachlor concentrations was delayed and only occurred after 29h. These findings suggest that peak exposure to S-metolachlor may affect the growth of sensitive alga in surface waters, considering that the effects extend beyond the period of exposure.  相似文献   

5.
The objective of this work was to evaluate absorption and translocation of the herbicide 2,4-D in plants of Memora peregrina. The herbicide 2,4-D was used alone with the formulation DMA 806 BR and associated with the herbicide picloram in the commercial product Padron. Levels of radioactivity on the treated leaves were determined in sample obtained after washing them with methanol and chloroform at different times after the application of the radiolabelled formulation (1, 2, 4, 8, 24, and 48 h). Translocation was evaluated by cutting plants between stem and root. The parts obtained were: root, stem, leaf treated, leaves above the leaf treated, leaves below the leaf treated, and leaf opposite of the leaf treated. These parts were weighted, dried, ground, burnt, and radioactivity in the samples was determined. The results suggest that the translocation of the radioactive herbicide 2,4-D was insignificant in plants of M. peregrina in the two treatments evaluated. Absorption of 14C 2,4-D in the treatment with DMA 806 BR and the mixture of DMA 806 BR plus Padron had the same behavior. These observations explain the inefficient control obtained with this herbicide in plant species under study.  相似文献   

6.
Sinha S  Saxena R 《Chemosphere》2006,62(8):1340-1350
The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.  相似文献   

7.
This study evaluates the effect of sewage amendment (SA) on the dissipation of terbuthylazine, its degradation compound desethyl-terbuthylazine, and S-metolachlor in the soil. The experiment was conducted at Padua Experimental Farm (Italy). Herbicides dissipation was evaluated in soils differently fertilized for three years: with inorganic fertilizer, with sewage sludge, and with a combination of them. Terbuthylazine and S-metolachlor were applied on sorghum as a formulated product at a dose of 2.8?L ha?1, and their dissipation was followed for 2.5 months. The concentrations of herbicides and one metabolite in soil were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine and S-metolachlor followed a pseudo first order kinetics; they dissipated faster in soil amended only with inorganic fertilizer than in soils amended with sewage or sewage?+?inorganic fertilizer. The reduction in mineralization of the herbicides after sewage addition can be attributed to the reduced herbicide availability to microorganisms. The degradation of terbuthylazine led to the formation of desethyl-terbuthylazine. SA slowed down the formation and the degradation of desethyl-terbuthylazine, leading to a higher amount measured at the end of the incubation. These findings have practical implications for the assessment of the environmental fate of terbuthylazine and S-metolachlor in agricultural areas.  相似文献   

8.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl2 solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

9.
Sinha S  Saxena R  Singh S 《Chemosphere》2005,58(5):595-604
In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters studied at 144 h in both part of the plant. It may be suggested from the present study that toxic concentrations of Cr cause oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, the higher levels of enzymatic and non-enzymatic antioxidants suggest the reason for tolerating higher levels of metals.  相似文献   

10.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl? solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

11.
The Microtox® test, using the prokaryote Vibrio fischeri, was employed to assess the toxicity of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their formulated compounds: Dual Gold Safeneur®, Callisto® and Milagro®; alone and in mixtures. For each compound we obtained original IC50 values, with consistent higher toxicities for formulated compounds compared to active ingredients alone. Mixtures of the four herbicides, prepared according to application doses encountered in agriculture, were found to be toxic at a lower concentration than single molecules. Mesotrione and nicosulfuron mixture appeared to be highly toxic to V. fischeri, however, this recommended post-emergence combination for maize crops got its toxicity decreased in formulated compound mixtures, suggesting that chemical interactions could potentially reduce the toxicity. Data comparisons to theoretical models showed a good prediction of mixture toxicity by Concentration Addition concept. Results seemed to exclude any synergistic effects on V. fischeri for the tested herbicide mixtures. Additional work coupling these bioassay data to ecosystemic level studies (aquatic and soil compartments) and data on additives and degradation products toxicity, will help to fill the gap in our knowledge of the environmental impact of these xenobiotics and in the choice of a more sustainable use of pesticides.  相似文献   

12.
Platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum was upregulated by the interaction of T. harzianum with maize roots or the foliar pathogen Curvularia lunata. PAF-AH was associated with chitinase and cellulase expressions, but especially with chitinase, because its activity in the KO40 transformant (PAF-AH disruption transformant) was lower, compared with the wild-type strain T28. The result demonstrated that the colonization of maize roots by T. harzianum induced systemic protection of leaves inoculated with C. lunata. Such protection was associated with the expression of inducible jasmonic acid pathway-related genes. Moreover, the data from liquid chromatography-mass spectrometry confirmed that the concentration of jasmonic acid in maize leaves was associated with the expression level of defense-related genes, suggesting that PAF-AH induced resistance to the foliar pathogen. Our findings showed that PAF-AH had an important function in inducing systemic resistance to maize leaf spot pathogen.  相似文献   

13.
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha?1) and Merlin Gold (1 L ha?1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L?1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L?1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L?1), while diketonitrile was detected in concentrations above 0.1 µg L?1 on 1 DAT in 2011 only.  相似文献   

14.
This study measured the responses of different anti-oxidants in 2-year-old birch (Betula pendula Roth) seedlings subjected to simulated acid rain (pH 4.0) and heavy metals (Cu/Ni), applied alone or in combination for 2 months. The applied concentrations of pollutants did not significantly affect seedling biomass or total glutathione levels. Acid rain alone increased superoxide dismutase (SOD) activity both in leaves and roots, while heavy metals alone inhibited SOD activity in roots. Both acid rain and heavy metals applied singly increased ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities in leaves but decreased activities in roots. In contrast, acid rain and heavy metal treatments increased glutathione reductase (GR) activity in roots but not in leaves. Spraying birch seedlings with a mixture of acid rain and heavy metals increased SOD, APX and GPX activities in leaves and GR activity in roots. However, the effects of mixed pollutants on enzyme activities usually were less than the summed effects of individual pollutants. Enzyme responses also depended on where pollutants were applied: spraying pollutants onto the shoots initiated higher responses in SOD, APX and GPX than did application to the soil surface, while the opposite was true for GR.  相似文献   

15.
Cadmium (Cd) stress may cause serious physiological, ultramorphological and biochemical anomalies in plants. Cd-induced physiological, subcellular and metabolic alterations in two transgenic cotton cultivars (BR001, GK30) and their parent line (Coker 312) were evaluated using 10, 100 and 1000 μM Cd. Germination, fresh biomass of roots, stems and leaves were significantly inhibited at 1000 μM Cd. Root volume tolerance index significantly increased (124.16%) in Coker 312 at 1000 μM Cd. In non-Cd stressed conditions, electron micrographs showed well-configured root meristem and leaf mesophyll cells. At 1000 μM Cd, greater ultramorphological alterations were observed in BR001 followed by GK30 and Coker 312. These changes were observed in nucleus, vacuoles, mitochondria and chloroplast. Dense precipitates, probably Cd, were seen in vacuoles, which were also attached to the cell walls. A considerable increase in number of nuclei, vacuoles, starch granules and plastoglobuli was observed in the electron micrographs of both roots and leaves at 1000 μM Cd. MDA contents were higher in roots of BR001 at 1000 μM Cd. Mean values of SOD activity in leaves of both BR001 and GK30 at 1000 μM Cd significantly increased as compared to the controls. POD activity in roots of BR001 and Coker 312 was greater at all Cd (10, 100, 1000 μM) levels over the control. Regarding APX, highest percent increase (71.64%) in roots of GK30 at 1000 μM Cd was found. Non-significant differences in CAT activity were observed at all levels of Cd stress in leaves of BR001 and GK30. Both transgenic cotton cultivars and their parental line invariably responded towards Cd stress. However, Coker 312 showed Cd-resistant behavior as compared to its progeny lines (BR001 and GK30).  相似文献   

16.
As part of a study of the phytotoxic risk of spreading contaminated sediments "on soil", a laboratory experiment was carried out to assess the impact of water draining from sediments on peripheral vegetation. Drainage water was obtained in the laboratory by settling three sediments with different pollutants levels, and the supernatant solutions (respectively A1, B1, C1 drainage waters) were used as soaking water for maize (Zea ma?s L.) and ryegrass (Lolium perenne L.). The physicochemical characteristics of the supernatant water, particularly metal contents, showed a pattern of contamination, with C1>A1>B1. The plants tested were grown on soil for 21 days, before being soaked for another 21-day period with drainage water (treatments) and distilled water (control). Biomass parameters (fresh weight, length, etc.), enzymatic activity [glutamine synthetase (GS), phosphoenolpyruvate carboxylase (PEPc)] and Zn, Cu, Cd and Cr contents were measured on both the shoots and roots of each plant. Biomass parameters were stimulated by C1, not affected by A1 and decreased with B1 for maize, whereas they increased for ryegrass in all the treatments. Compared to the control, GS activity was stimulated by C1 in the shoots of both plants and inhibited by treatments B1 and C1 in maize roots. PEPc activity in ryegrass was 1.5-5 times higher with contaminated water treatment, while contrasting effects were observed in maize plants. Both plants showed greater accumulation of chromium and zinc than cadmium and copper. Treatment A1 was found to be less active on plant growth and have a lower impact on the physiological status (enzymatic activities) of both plants. Treatment C1 stimulated the growth and physiological status of the plants, especially in shoots, with higher metal accumulation values in both plants. Treatment B1 was found to show more variable effects on growth indices, enzymatic activity and metal accumulation according to plant species.  相似文献   

17.
Mecoprop, dichlorprop and metolachlor concentrations and enantiomer signatures were determined in Ontario streams in 2006-2007 and compared to results from 2003 to 2004. Median concentrations of dichlorprop and metolachlor were not significantly different between the two campaigns, but mecoprop was higher in 2006-2007. Concentrations of mecoprop and dichlorprop in Lake Ontario surface water were 1-2 orders of magnitude lower than stream averages. Enantiomer fractions (EFs) > 0.5 of mecoprop in high-concentration stream water samples during 2006-2007 were related to replacement of racemic mecoprop by single (+) enantiomer mecoprop-P after 2004. EFs <0.5 in low-concentration samples suggested enantioselective degradation and/or interconversion. Metolachlor profiles were expressed as SF, the fraction of herbicidally active/(active + inactive) stereoisomers. Samples with higher concentrations of metolachlor had SFs similar to S-metolachlor which is enriched in the active stereoisomers. Low concentrations were associated with lower and more variable SFs, suggesting mixed input of racemic and S-metolachlor or stereoselective degradation.  相似文献   

18.
Leaves of Tendergreen bean plants exposed to atmospheric fluoride concentrations in the range 1.7 to 7.6 μg/m3 showed increased levels of enolase and catalase activity and decreased levels of pyruvate and α-ketoglutarate. Phosphoenolpyruvate carboxylase activity and oxalacetate were not affected. The leaves of Milo maize plants exposed to 5.0 μg F/m3 showed increased levels of enolase and pyruvate kinase activity and a decreased level of pyruvate. Oxalacetate and α-ketoglutarate levels were not affected. Catalase activity was increased, then decreased by IIF fumigation. The changes induced by HF were greatest six to 10 days after the start of fumigation and disappeared or decreased in magnitude during the post-fumigation period.  相似文献   

19.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

20.

Dark septate endophytes (DSE) are widely distributed in plant roots grown in stressful habitats, especially in heavy metal-polluted soils. But little is known about the physiological interactions between DSE and plants under heavy metal stress. In the present study, the growth, Cd content, and physiological response of Zea mays L. to a root-colonized DSE, Exophiala pisciphila, were analyzed under Cd stress (0, 5, 10, 20, and 40 mg/kg) in a sand culture experiment. Under high Cd (10, 20, and 40 mg/kg) stress, the DSE colonization in roots increased the maize growth, kept more Cd in roots, and decreased Cd content in shoots. The DSE colonization improved the photosynthesis and induced notable changes on phytohormones but had no significant effect on the antioxidant capability in the maize leaves. Moreover, there were significant positive correlations between the gibberellic acid (GA) content and transpiration rate, zeatin riboside (ZR) content, and photosynthetic rate in maize leaves. These results indicated that the DSE’s ability to promote plant growth was related to a decrease on Cd content and the regulation on phytohormone balance and photosynthetic activities in maize leaves.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号