首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

2.
Development of biodegradable polymers from absolute environmental friendly materials has attracted increasing research interest due to public awareness of waste disposal problems caused by low degradable conventional plastics. In this study, the potential of incorporating natural rubber latex (NRL) into chemically modified sago starch for the making biodegradable polymer blends was assessed. Native sago starch was acetylated and hydroxypropylated before gelatinization in preparing starch thermoplastic using glycerol. They were than casted with NRL into biopolymer films according to the ratios of 100.00/0.00, 99.75/1.25, 98.50/2.50, 95.00/5.00, 90.00/10.00 and 80.00/20.00 wt/wt, via solution spreading technique. Water absorption, thermal, mechanical, morphological and biodegradable properties of the product films were evaluated by differential scanning calorimetry (DSC), universal testing machine (UTM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy. Results showed that acetylation promoted the incorporating behavior of NRL in sago starch by demonstrating a good adhesion characteristic and giving a uniform, homogenous micro-structured surface under SEM observation. However, the thin biopolymer films did not exhibit any remarkable trend in their DSC thermal profile and UTM mechanical properties. The occurrence of NRL suppressed water adsorption capacity and delayed the biodegradability of the biopolymer films in the natural environment. Despite the depletion in water adsorption capacity, all of the product films degraded 50 % within 12 weeks. This study concluded that biopolymers with desirable properties could be formulated by choosing an appropriate casting ratio of the sago starch to NRL with suitable chemical substitution modes.  相似文献   

3.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

4.
Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

5.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

6.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

7.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

8.
This study focused on improving the material properties of pea thermoplastic starch (TPS) with polycaprolactone (PCL) and flax fiber. Accordingly, composites of glycerol-plasticized pea starch, polycaprolactone, and flax fiber were prepared through solid-phase compounding and compression-molding. The specimens were characterized through scanning electron microscopy, tensile test, moisture absorption test, and differential scanning calorimetry. Morphological studies of the tensile fracture surfaces revealed poor TPS-PCL interfacial interaction and limited TPS-flax fiber interfacial bonding. The composites showed significant improvements in tensile strength with reduced moisture absorption capability essentially due to the hydrophobicity of PCL. Individual components of the composites retained their respective thermal properties, an indication of thermodynamic immiscibility.  相似文献   

9.
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

10.
Biodegradable polymer was prepared as thermoplastic starch (TPS) using rice and waxy rice starches. In order to increase mechanical properties and reduce water absorption of the TPS, cotton fiber was incorporated as the fiber reinforcement into the TPS matrix. The effect of cotton fiber contents and lengths on properties of the TPS was examined. Internal mixer and compression molding machine were used to mix and shape the samples. It was found that the thermoplastic rice starch (TPRS) showed higher stress at maximum load and Young’s modulus but lower strain at maximum load than the thermoplastic waxy rice starch (TPWRS). In addition, stress at maximum load and Young’s modulus of both TPRS and TPWRS increased significantly with the addition of the cotton fiber. Cotton fiber contents and lengths also affected mechanical properties of the TPRS and TPWRS composites. Moreover, water absorption of the TPRS and TPWRS composites decreased by the use of the cotton fibers. FT-IR and XRD techniques were used to study a change in functional group and crystallinity of the thermoplastic starch composites. Morphological, thermal and biodegradable properties of different thermoplastic starch composites were also investigated.  相似文献   

11.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

12.
Green composites of regenerated cellulose short fibers/cellulose were prepared by dissolving cellulose in a green solvent of 7% NaOH/12% Urea aqueous solution that was pre cooled at ?12?°C. The effect of fiber loading on the tensile, optical, thermal degradation and cell viability was studied. The tensile properties of cellulose were improved by the regenerated cellulose fiber reinforcement. The interfacial bonding between the fibers and matrix was assessed using the fractographs and found it to be good.  相似文献   

13.
The objective of this work is to study the feasibility of reinforcing polymer composites by utilizing the biofibers from the agricultural residue of Moringa oleifera pod husks (MOPH). The chemical and physical properties of the fibers were comprehensively investigated to evaluate their potential as a filler in gelatin-based films. The effect of MOPH fiber concentrations of 0, 5, 10, and 15 wt% on the water vapor permeability (WVP), and mechanical and thermal properties of the gelatin-based films was studied. By incorporation of 10 wt% of the MOPH fibers in gelatin, the highest tensile strength and Young’s modulus, and the lowest WVP properties were obtained. Scanning electron microscopy (SEM) photographs indicated good interfacial adhesion between the fibers and the gelatin matrix. TGA of the biocomposites revealed an improvement of thermal stability. Moreover, under accelerated weathering, the gelatin-MOPH-10% biocomposite degraded more slowly than the gelatin control. These results indicate that the MOPH fibers are a good reinforcing filler and may be useful for biocomposite applications.  相似文献   

14.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

15.
Environmentally friendly green composites were prepared by blending Wheat gluten (WG) as matrix, dialdehyde starch (DAS) as filler and glycerol as plasticizer followed by compression molding of the mixture at 110 °C. The properties of the WG/DAS composite are compared with those of the WG/native wheat starch (NWS) composites. While tensile strength and strain at break decrease with increasing NWS content in the WG/NWS composites, a small content of DAS could improve tensile strength and strain at break simultaneously in the WG/DAS composites. The WG/DAS composites exhibit reduced moisture absorption in comparison with the WG/NEW composites. Formation of chemical bonding between DAS and WG is beneficial for the dispersion of DAS in the WG matrix and WG/DAS composites exhibit improved mechanical properties and reduced moisture absorption over the WG/NWS composites.  相似文献   

16.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

17.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

18.
Sugar beet pulp (SBP), the residue from sugar extraction, was compounded and turned into in situ thermoplastic composite materials. The compounding was performed using a common twin- screw compounding extruder and water and glycerol were used as co-plasticizers. The melt compounding of SBP utilized the water-soluble characteristics of pectin which is one of main components of SBP. The structure of SBP was destroyed under extrusion and pectin was partially released and plasticized by water and glycerol. Scanning electron microscopy revealed that the cellulose microfibrils were dispersed in the matrix of pectin and other ingredients. Effects of the water and glycerol co-plasticizers on rheological, tensile and dynamic mechanical properties of the SBP plastics were investigated. Effects of relative humidity of the environment on the tensile and dynamical mechanical properties of the neat SBP compounds were also evaluated. The results demonstrated that SBP could be processed as a plastic with water and glycerol as co-plasticizers using traditional processing equipments.  相似文献   

19.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

20.
Short fiber reinforced polymer composites were prepared from lignocellulose fibers and feather keratin polymer (FKP). The FKP matrix was prepared from the reactive processing of poultry feather keratin, glycerol, water, and sodium sulfite. Lignocellulose fibers of varying source, length, and mass fraction were used and it was found that positive reinforcement of FKP was affected by all three. Positive reinforcement was defined as an increase in elastic modulus when normalized by FKP with the same amount of glycerol but no fibers. Positive reinforcement was only able to occur for modulus but not stress at break indicating that the composites were of high physical properties only under small deformations. At large deformations, fiber pull-out was observed in the composites using scanning electron microscopy. The most likely origin of this behavior appeared to be from weak fiber–polymer interactions dominated by friction and rationalized by a force balance across the fiber–polymer interface. High fiber loadings were shown to be reinforcing because of the formation of a network of lignocellulose fibers. The addition of lignocellulose fibers increased the thermal stability of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号