首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The combined effect of salinity, temperature and chronic exposure to water-soluble fractions (WSF) of a No. 2 fuel oil on the survival and development rate of embryos ofFundulus heteroclitus Walbaum are described. The embryos were exposed at 3 salinities (10, 20, 30 S) and 3 temperatures (20°, 25°, 30°C) to 3 different oil concentrations (15, 20, 25% WSF, equivalent to approx 0.28, 0.38 and 0.47 ppm total naphthalenes) and to one control without oil. The results were analyzed by responsesurface methodology. The lowest oil concentration was only mildly toxic to embryos under optimal salinity/temperature conditions, while the highest was extremely toxic in all factor combinations. Under optimal conditions, only the highest oil concentration resulted in more than 50% mortality. Under suboptimal conditions, especially high and low temperatures, all 3 oil concentrations caused greater than 50% mortality. The interactive effect of salinity and temperature on survival was greatest at the lowest oil concentration. Temperature had a marked effect and salinity only a slight effect on the developmental rate of the embryos. Exposure to the low oil concentration tended to increase the temperature sensitivity of developmental duration slightly. Generally, exposure to oil decreased the time interval between fertilization and hatching.  相似文献   

2.
Combined effects of temperature, salinity and nutrition on larval survival and growth of the European oyster Ostrea edulis L. were studied over a period of seven days in the laboratory. Larvae were obtained in August 1985 from oysters reared under field conditions on the Mediterranean coast. Four temperatures (15°, 20°, 25°, 30°C), four salinities (20, 25, 30, 35 S) and two levels of nutrition (fed or unfed) were used in the experimental design; the fed larvae received a mixed algal diet of Isochrysis galbana and Chaetoceros calcitrans forma pumilum at a concentration of 100 cells per microlitre. Larvae survived over a wide range of temperature and salinity; statistical analysis indicated that nutrition had the greatest effect on the development of O. edulis larvae, explaining 85 to 88% of the variance in growth. Compared with temperature, the effect of salinity was very slight, usually statistically insignificant. The combined effects of temperature and nutrition produced the only significant interaction. Growth of starved larvae seems to be independent of both temperature and salinity within the range of levels tested.  相似文献   

3.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

4.
Laboratory experiments of a factorial design were used to examine the combined effects of temperature and salinity on the survival and growth of early and late-stage larvae of Adula californiensis (Phillippi, 1847). Response-surface curves were generated to predict optimal conditions for survival and growth in order to better understand the successful recruitment of this species within the Yaquina Bay estuary (Oregon, USA). Three-day old cultured larvae were more sensitive to reduced salinity than were 15-day old larvae. However, the 15-day old larvae showed a narrower temperature tolerance than the 3-day old larvae. A. californiensis larvae survived over a wider range of temperatures near optimum salinities than at salinities near their lower tolerance limit, and conversely. Temperature and salinity ranges for maximum survival (10° to 15°C, 31 to 33) were narrower than the ranges which occur within the estuary where the adult populations exist. Larval size did not increase markedly during the 15-day rearing period, and was not greatly affected by temperature or salinity. No statistically significant temperature-salinity interaction was found for either survival or growth.  相似文献   

5.
Combined effects of lead, salinity and temperature on the embryonic development of the mussel Mytilus galloprovincialis Lmk. were studied under laboratory conditions. The basic experimental design was a 4x6 factorial experiment using 4 lead concentrations (100, 250, 500 and 1000 ppb Pb2+) and 6 salinity levels (from 25 to 37.5 with 2.5 intervals). These factorial designs were carried out at three constant temperatures (150, 17.50 and 20°C). The statistical analysis indicated that salinity changes have more effect on the embryonic development than temperature. Optimal development was observed at 34.8 and 15.6°C, which is in accordance with observations in the field. The effect of lead was mininal in optimal salinity and temperature conditions. The deleterious effect of lead on the embryonic development was especially conspicuous at 20°C. Since in nature spawning occurs at temperatures inferior to 20°C, lead will probably not drastically decrease the potential recruitment of mussel spat in the littoral populations of the northern Adriatic Sea, where the salinity of the water is relatively stable. Under experimental conditions, lead caused a delay or inhibition of the embryonic development with the occurrence of a large number of abnormal larvae.  相似文献   

6.
The survival of Orchestia chiliensis (Milne Edwards, 1840) was investigated at salinities between 0.3 and 68 and constant or 10 C° cyclic temperatures between 5° and 25° C. Mortality increased with age, temperature and at salinity extremes. Small individuals show little seasonal acclimatisation apart from increased thermal tolerance at the highest exposure temperature. Larger individuals show a lateral shift in the mortality curve to the right in summer, giving increased survival at most salinities. Salinity had less effect on amphipods in cyclic regimes and survival was similar in 5° to 15° C and 10° to 20° C cycles. Mortality of larger individuals was higher in the 15° to 25° C cycle, but seasonal acclimatisation gave increased resistance at all fluctuating temperatures during the summer. Mortality in cyclic temperatures was higher than at similar constant temperatures. O. chiliensis does not actively evade immersion and diel temperature changes of 10 C° represent an important stress factor. This would affect all life stages and influence field populations both in the winter and the summer.  相似文献   

7.
The developmental stages from megalopa to third crab of the blue crab Callinectes sapidus Rathbun were tested in 12 combinations of cadmium (0, 50, and 150 ppb) and salinity (10, 20, 30, and 40) at 25°C. A reduction in survival and a significant delay in development from megalopa to third crab occurred within each salinity regime in 50 ppb compared with the control. Comparison of the delay in development within each salinity regime revealed that the sublethal effect of cadmium was most pronounced in the salinities normally preferred by C. sapidus. A similar comparison within each cadmium concentration, however, showed that the developmental time from megalopa to third crab was approximately the same irrespective of salinity. The developmental stages from hatch to first crab of the mud-crab Rhithropanopeus harrisii (Gould) were examined in 63 combinations of cadmium (0, 50, and 150 ppb), salinity (10, 20, and 30), constant temperature (20°, 25°, 30°, and 35°C) and cycling temperature (20° to 25°C, 25° to 30°C, and 30° to 35°C). The results indicated that cycling temperatures may have a stimulating effect on survival of the larvae compared to constant temperatures, both in the presence and in the absence of cadmium. Effects of cadmium and salinity and their interaction on the survival of the larvae from zoeae to megalopa were documented at most of the temperatures by analyses of variance. The zoeal larvae were more susceptible to cadmium than the megalopa. Effects of different combinations of cadmium and salinity on the duration of larval development were assessed by a t-test.  相似文献   

8.
The combined effects of temperature and salinity on embryonic development and on larval survival and growth to setting size of the northerm bay scallop Argopecten irradians irradians (Lamarck) were studied in the laboratory. A 6x6 complete factorial design was used; temperatures ranged from 10° to 35°C, at 5C° intervals, and salinities ranged from 10 to 35S, at 5S intervals. Response-surface contour diagrams were generated to provide estimates of conditions for optimal responses. Normal development of embryos occurred over a very narrow range of temperature and salinity. Survival of larvae occurred over a wider range of temperature and salinity than did embryonic development or growth of larvae. Satisfactory growth (>70% of the maximum observed value) occurred only at high temperature-high salinity conditions; optimal conditions for survival occurred at similar salinities, but at slightly lower temperatures. Temperatures of 35°C or greater and/or salinities of 10S or less were lethal for all life stages studied. Both salinity and temperature exerted significant effects on development and survival, but temperature was clearly the dominant factor influencing growth. It is suggested that northern bay scallop embryos and larvae be reared at their respective optimal temperature-salinity levels so as to increase efficiency of aquaculture operations.This paper is adapted from a thesis submitted to the College of Fisheries, University of Washington, in partial fulfillment of the requirements for the MS degree. This study was conducted at the NMFS Laboratory in Milford, Connecticut, USA  相似文献   

9.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

10.
Adult Patiriella pseudoexigua were collected in October 1989 from Wanlitung, Taiwan and then induced to spawn in the laboratory. Post-metamorphosed juvenile P. pseudoexigua were reared on a diet of benthic algae Navicula sp. at 25°C and salinity (34). Six weeks after metamorphosis, juvenile P. pseudoexigua at ca. 400 m in radius were reared on a diet of benthic algae Navicula sp. at different combinations of temperatures (20, 25, 30°C) and salinities (26, 30, 34) for 40 d. Both temperature and salinity had a significant effect on juvenile survival and growth. Juveniles survived best (>90%) at 25°C and 34 and grew best (to ca. 750 m in radius) at 30°C and 34. Variation in juvenile size was small immediately after metamorphosis and increased with time.  相似文献   

11.
E. His  R. Robert  A. Dinet 《Marine Biology》1989,100(4):455-463
The combined effects of temperature, salinity and nutrition on survival and growth of larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas were studied over a period of 7 d in the laboratory. Ripe adults, collected in spring and summer 1987 from natural populations in the Bay of Arcachon, France, were induced to spawn. Larvae of both species were cultured at four temperatures (15°, 20°, 25° and 30°C), four salinities (20, 25, 30 and 35S) per temperature, and two levels of nutrition (fed and unfed) per temperature/salinity combination. The fed larvae received a mixed algal diet of 50 cells each of Isochrysis galbana and Chaetoceros calcitrans forma pumilum per microlitre. In both bivalve species, larvae survived over a wide range of temperature and salinity, with the exception of mussel larvae, which died at 30°C. Statistical analysis indicated that nutrition had the greatest effect on larval development, explaining 64 to 75% of the variance in growth of M. galloprovincialis and 54 to 70% in growth of Crassostrea gigas. Unfed mussel larvae displayed little growth. Compared with temperature, the effect of salinity was very slight. M. galloprovincialis larvae exhibited best growth at 20°C and 35S and C. gigas at 30°C and 30S.  相似文献   

12.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

13.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

14.
S. V. Job 《Marine Biology》1969,2(2):121-126
In a series of experiments 174, 120 and 139 individuals of the teleost Tilapia mossambica (Peters), were acclimated to 30°C and to salinities of 0.4, 12.5 and 30.5, respectively. The effect of temperature and salinity upon oxygen consumption was studied by abruptly transferring fish of different wet weights to temperatures from 15° to 40°C at an average initial pO2 of 250mm Hg. At each salinity, the proportionate response to temperature is size-independent. The metabolic rate increases as a function of temperature at 15° and 30°C but not at 40°C. Oxygen consumption is, however, salinity dependent; maximum rates are obtained at 12.5S. This salinity is isotonic in the 80 g fish and, to a lesser extent, in the 5 g fish. Reduction in osmotic load is suggested as the probable cause for a greater scope for activity and greater rate of oxygen consumption in 12.5 salinity.  相似文献   

15.
Growth, reproduction and gross biochemical composition of the Manila clam Ruditapes philippinarum were studied for one oceanic and two inner stations in the Bay of Arcachon, France, from March 1989 to March 1991. During this period, sea-water temperature, salinity and chlorophyll a were also recorded. A marked increase in length occurred during the first year in all areas, after which growth rates decreased. In contrast, weight increased more steadily. The Manila clam exhibited best development in the oceanic area, but there was no difference in growth of clams between the two inner stations. Differences in growth between oceanic and inner stations may result from differences in fluctuations of environmental conditions such as temperature and salinity. Except for higher carbohydrate contents in clams recovered in autumn from the oceanic station Le Ferret, biochemical components differed little between stations. During the second winter, glycogen levels were relatively low, but no mortalities were recorded. On the other hand, sowing spat in autumn instead of spring or sowing larger-sized spat did not reduce the time required for culture of R. philippinarum.  相似文献   

16.
Larvae of the estuarine grass shrimp Palaemonetes pugio (Holthuis) were reared from hatch through successful completion of metamorphosis in 80 combinations of salinity (3 to 31%), temperature (20° to 35°C), and zinc (0.00 to 1.00 ppm Zn++). Response-surface methodology was employed to depict the individual effects and interactions of the three factors on survival and developmental duration through total larval development. Outside the optimal salinity-temperature conditions of 17 to 27 S and 20° to 27°C, viability of larvae was reduced by both the individual effects of salinity and temperature and interactions between the two factors. Survival capacity of larvae and resistance adaptations to salinity and temperature were progresively reduced by zinc concentrations from 0.25 to 1.00 ppm Zn++. Response-surface analysis of the data suggested that the duration of total larval development of P. pugio was least at salinities from 18 to 23 and at temperatures from 30° to 32°C. At both higher and lower salinity-temperature conditions and in increasing zinc concentrations from 0.25 to 1.00 ppm Zn++, developmental rates were retarded. A significant zinc-temperature interaction existed, whereby increasing zinc concentrations reduced both survival and developmental rates of larvae more at suboptimal temperatures. Larval resistance to zinc toxicity was least at supraoptimal salinities, indicative of a significant zinc-salinity interaction. The reduced viability, restricted euryplasticity, and retarded developmental rates of P. pugio larvae developing in media with low-level zinc contamination would limit the distributive properties of the pelagic phase in the life cycle of the species and reduce recruitment both into and out of the parent estuarine population.  相似文献   

17.
Zoeae of the mud crabRhithropanopeus harrisii (Gould) were exposed continuously throughout larval development to factorial combinations of salinity, temperature and specific aromatic hydrocarbon concentrations. Salinities and temperatures were 5, 15, or 25 and 20°, 25°, or 30°C, respectively. Either phenanthrene or naphthalene was tested separately at respective concentrations of 0, 100, 150 or 200 ppb and 0, 125, 250 or 500 ppb. Phenanthrene was much more toxic than naphthalene. Naphthalene was not acutely toxic at any physical factor combination-naphthalene concentration tested. Both compounds caused the highest mortality at low salinities. The time course of mortality due to phenanthrene exposure showed that ecdysis between the first and second zoeal stage was the most sensitive period for the larvae exposed to aqueous hydrocarbons. Phenanthrene-exposed larvae had a decreased development rate, but the naphthalene-exposed larvae developed faster than the controls.  相似文献   

18.
The effects of physiological and nutritional factors and of temperature on the uptake of L-methionine by Saccostrea commercialis were investigated on cultured rock oysters from Port Stephens, New South Wales, Australia, in 1983. Optimum conditions for L-methionine accumulation were 30°C, 18 h exposure and concentrations of other amino acids less than that of L-methionine. The uptake of L-glycine was inhibited by L-methionine in a reciprocal manner. There was no effect of salinity on the accumulation of L-methionine by acclimated oysters. During the latter investigations the range of osmoconformity was found to be 15 to 45 S. Oysters take 2 d to conform to new media osmolarities after salinity changes of 15. Amino acid supplements in oyster diets should be kept within the same order of magnitude to reduce inhibition of uptake.  相似文献   

19.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

20.
The coralline alga Phymatolithon calcareum was dredged from 13 m in the Kattegatt, Baltic Sea, in December, 1980, and its rate of calcification was measured by 45Ca++-uptake methods. Light-saturated calcification rates at 5°C ranged from 15.8 g CaCO3 g-1 dry wt h-1 for the basal parts of the plants to 38.7 g CaCO3 g-1 dry wt h-1 for the tips. These age gradients were not apparent when calcification rates were expressed on the basis of surface area. Experiments with salinity (10, 20, 30) and temperature (0°, 5°, 10°, 20°C) indicated that optimum conditions for calcification were at 30 S and at temperatures above 10°C. Salinity had a greater influence on calcification rate than did temperature, and there was a positive relationship between salinity and calcification rate at all temperatures. In 6 mo old cultures, salinity was again the important factor, with all plants remaining healthy at 30 except those at the highest temperature (20°C). These trends, and the low calcification rates at 10S (4.6 g CaCO3 g-1 dry wt h-1 at 5°C to 8.6 g CaCO3g-1 dry wt h-1 at 20°C) suggest that low salinity may be the explanation for the general absence of P. calcareum from the brackish waters of the Baltic Sea. Short-term experiments in which salinity was kept constant while Ca++ concentration was altered, and experiments in which salinity was varied and Ca++ concentration kept constant, suggest that it is the calcium ion concentration and not salinity per se which affects calcification rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号