首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analysis of present and future hydrological conditions at the Forsmark site in Sweden, which has been proposed as the site for a geological repository for spent nuclear fuel. Forsmark is a coastal site that changes in response to shoreline displacement. In the considered time frame (until year 10 000 ad), the hydrological system will be affected by landscape succession associated with shoreline displacement and changes in vegetation, regolith stratigraphy, and climate. Based on extensive site investigations and modeling of present hydrological conditions, the effects of different processes on future site hydrology are quantified. As expected, shoreline displacement has a strong effect on local hydrology (e.g., groundwater flow) in areas that change from sea to land. The comparison between present and future land areas emphasizes the importance of climate variables relative to other factors for main hydrological features such as water balances.  相似文献   

2.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105–8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.  相似文献   

3.
4.
5.
Avila RM  Kautsky U  Ekström PA 《Ambio》2006,35(8):513-523
To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors.  相似文献   

6.
This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a potential repository site for storing high-level radioactive waste. The study has been conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the proposed repository's system performance using different conceptual models. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed.  相似文献   

7.
Nature-based solutions (NBS), understood as actions that use ecosystem processes to address societal needs, can play important roles to future-proof river landscape development for people and nature. However, knowledge gaps exist how NBS can be planned and implemented at landscape scales. This Special Issue brings together insights and experiences from studies of assessing, planning, and implementing NBS in river landscapes in Europe and beyond. It addresses three research fields: (i) NBS effects, looking at the effectiveness of NBS to achieve ecological, social, and/or economic outcomes, (ii) NBS planning, focusing on approaches for planning and designing NBS, and (iii) NBS governance, relating to governance and business models for implementation. The twelve contributions deliver evidence on how NBS outperform conventional, rather technical solutions, provide guidance and tools to operationalize the NBS concept into practice, and showcase successful governance models of NBS in different contexts. The editorial ends with an outlook on further research needs.  相似文献   

8.
Conservation efforts tend to focus on the direct impacts humans have on their surrounding environment; however there are also many ways in which people indirectly affect ecosystems. Recent research on ecological subsidies—the transfer of energy and nutrients from one ecosystem to another—has highlighted the importance of nutrient exchange for maintaining productivity and diversity at a landscape scale, while also pointing toward the fragility of ecotones and vulnerability of subsidies to human activities. We review the recent literature on landscape connectivity and ecosystem subsidies from aquatic systems to terrestrial systems. Based on this review, we propose a conceptual model of how human activities may alter or eliminate the flow of energy and nutrients between ecosystems by influencing the delivery of subsidies along the pathway of transfer. To demonstrate the utility of this conceptual model, we discuss it in the context of case studies of subsidies derived from salmon, marine mammals, sea turtles, sea birds, and shoreline debris. Subsidy restoration may require a different set of actions from simply reversing the pathway of degradation. We suggest that effective restoration and conservation efforts will require a multifaceted approach, targeting many steps along the subsidy transfer pathway, to address these issues.  相似文献   

9.
Jansson U  Kautsky U  Miliander S 《Ambio》2006,35(8):505-512
Production and consumption of food and in a rural area over the last 400 years were reconstructed for a parish in south east Sweden. This was based on a number of different data sources, including historical maps and official demographic and agricultural statistics. Changes in population (and thus consumption) and the production from arable land and livestock were calculated and used to provide an estimate of the area's supply and demand over time, and of the historical sustainability of the area. Overall food productivity was remarkably constant over time, at approximately 0.04 kgC m(-2) y(-1), despite recent changes in population size and the area of cultivated land. The empirical results from the past and the present, together with the future land changes due to shoreline displacement were used to predict the situation in the future. These final estimates can be used in the assessment of risk for exposure to contaminated food for the future population in the area.  相似文献   

10.
The sites at Bangombé and Okélobondo (Oklo) in Gabon provide a unique opportunity to study the behaviour of products from natural nuclear reactions in the vicinity of reactor zones which were active around two billion years ago. The Commission of the European Communities initiated the Oklo Natural Analogue Programme. One of the principal aims was to study indications of present time migration of elements from the reactor zones under ambient conditions. The hydrogeological and hydrochemical data from the Oklo sites were modelled in order to better understand the geochemical behaviour of radionuclides in the natural system, by using independent models and by comparing the modelling outcome. Two modelling approaches were used: M3 code (hydrochemical mixing and mass balance model), developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) and HYTEC (reactive transport model) developed by Ecole des Mines de Paris.Two different reactor zones were studied: Bangombé, a shallow site, the reactor being at 11 m depth, and OK84 at Okélobondo, situated at about 450 m depth, more comparable with a real repository location. This allowed the validation of modelling tools in two different sedimentary environments: one shallow, with a more homogeneous layering situated in an area of meteoric alteration, and the other offering the opportunity to study radionuclide migration from the reaction zone over a distance of 450 m through very heterogeneous sedimentary layers.The modeling results indicate that the chemical reactions retarding radionuclide transport are very different at the two sites. At Bangombé, the decomposition of organic material consumes oxygen and at Okélobondo the oxygen is consumed by inorganic reactions resulting, in both cases, in uranium retardation. Both modelling approaches (statistic with M3 code and deterministic with HYTEC code) could describe this situation.The goal of this exercise is to test codes which can help to describe and understand the processes taking place at the sites, validate the models with in situ data, and thus build confidence in the tools used for future site characterization. Ultimately, this allows identifying and selecting processes and parameters that can be used as input into repository performance assessment calculations and modelling exercises.  相似文献   

11.
12.
Connectivity is key for understanding how ecological systems respond to the challenges of land-use change and habitat fragmentation. Structural and functional connectivity are both established concepts in ecology, but the temporal component of connectivity deserves more attention. Whereas functional connectivity is often associated with spatial patterns (spatial functional connectivity), temporal functional connectivity relates to the persistence of organisms in time, in the same place. Both temporal and spatial processes determine biodiversity responses to changes in landscape structure, and it is therefore necessary that all aspects of connectivity are considered together. In this perspective, we use a case study to outline why we believe that both the spatial and temporal components of functional connectivity are important for understanding biodiversity patterns in the present-day landscape, and how they can also help us to make better-informed decisions about conserving and restoring landscapes and improving resilience to future change.  相似文献   

13.
G?ran Sundblad  Ulf Bergstr?m 《Ambio》2014,43(8):1020-1028
Coastal development has severely affected habitats and biodiversity during the last century, but quantitative estimates of the impacts are usually lacking. We utilize predictive habitat modeling and mapping of human pressures to estimate the cumulative long-term effects of coastal development in relation to fish habitats. Based on aerial photographs since the 1960s, shoreline development rates were estimated in the Stockholm archipelago in the Baltic Sea. By combining shoreline development rates with spatial predictions of fish reproduction habitats, we estimated annual habitat degradation rates for three of the most common coastal fish species, northern pike (Esox lucius), Eurasian perch (Perca fluviatilis) and roach (Rutilus rutilus). The results showed that shoreline constructions were concentrated to the reproduction habitats of these species. The estimated degradation rates, where a degraded habitat was defined as having ≥3 constructions per 100 m shoreline, were on average 0.5 % of available habitats per year and about 1 % in areas close to larger population centers. Approximately 40 % of available habitats were already degraded in 2005. These results provide an example of how many small construction projects over time may have a vast impact on coastal fish populations.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0522-y) contains supplementary material, which is available to authorized users.  相似文献   

14.
Functional agrobiodiversity (FAB) has severely declined during the last decades. Current efforts to reinforce FAB are mainly focused on single-actor, parcel-based measures, whereas multi-actor landscape approaches are supposed to be more effective. In this paper, we propose a social–ecological framework that structures how different land users at both the parcel and landscape level interact with FAB as a natural resource. Furthermore, we introduce 1 m2 FAB gardens as an interactive multipurpose measurement tool to gather data on ecosystem services in collaboration with land users. The presented action research approach provides new insights on motivations and interests of different land users in FAB and how knowledge exchange can result in a higher motivation to invest in FAB. Using a case study in Flanders, we illustrate the FAB-garden concept and highlight its strengths and necessary considerations to properly complement other research approaches in this social–ecological system.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01382-0) contains supplementary material, which is available to authorized users.  相似文献   

15.
Modelling nitrogen transfer and transformation at the landscape scale is relevant to estimate the mobility of the reactive forms of nitrogen (Nr) and the associated threats to the environment. Here we describe the development of a spatially and temporally explicit model to integrate Nr transfer and transformation at the landscape scale. The model couples four existing models, to simulate atmospheric, farm, agro-ecosystem and hydrological Nr fluxes and transformations within a landscape. Simulations were carried out on a theoretical landscape consisting of pig-crop farms interspersed with unmanaged ecosystems. Simulation results illustrated the effect of spatial interactions between landscape elements on Nr fluxes and losses to the environment. More than 10% of the total N2O emissions were due to indirect emissions. The nitrogen budgets and transformations of the unmanaged ecosystems varied considerably, depending on their location within the landscape. The model represents a new tool for assessing the effect of changes in landscape structure on Nr fluxes.  相似文献   

16.
Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models’ spatial accuracy, which often remains low.  相似文献   

17.
18.
The sites at Bangombé and Okélobondo (Oklo) in Gabon provide a unique opportunity to study the behaviour of products from natural nuclear reactions in the vicinity of reactor zones which were active around two billion years ago. The Commission of the European Communities initiated the Oklo Natural Analogue Programme. One of the principal aims was to study indications of present time migration of elements from the reactor zones under ambient conditions. The hydrogeological and hydrochemical data from the Oklo sites were modelled in order to better understand the geochemical behaviour of radionuclides in the natural system, by using independent models and by comparing the modelling outcome. Two modelling approaches were used: M3 code (hydrochemical mixing and mass balance model), developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) and HYTEC (reactive transport model) developed by Ecole des Mines de Paris. Two different reactor zones were studied: Bangombé, a shallow site, the reactor being at 11 m depth, and OK84 at Okélobondo, situated at about 450 m depth, more comparable with a real repository location. This allowed the validation of modelling tools in two different sedimentary environments: one shallow, with a more homogeneous layering situated in an area of meteoric alteration, and the other offering the opportunity to study radionuclide migration from the reaction zone over a distance of 450 m through very heterogeneous sedimentary layers. The modeling results indicate that the chemical reactions retarding radionuclide transport are very different at the two sites. At Bangombé, the decomposition of organic material consumes oxygen and at Okélobondo the oxygen is consumed by inorganic reactions resulting, in both cases, in uranium retardation. Both modelling approaches (statistic with M3 code and deterministic with HYTEC code) could describe this situation. The goal of this exercise is to test codes which can help to describe and understand the processes taking place at the sites, validate the models with in situ data, and thus build confidence in the tools used for future site characterization. Ultimately, this allows identifying and selecting processes and parameters that can be used as input into repository performance assessment calculations and modelling exercises.  相似文献   

19.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   

20.
In this study, we introduce the prospect of using prognostic model-generated meteorological output as input to steady-state dispersion models by identifying possible advantages and disadvantages and by presenting a comparative analysis. Because output from prognostic meteorological models is now routinely available and is used for Eulerian and Lagrangian air quality modeling applications, we explore the possibility of using such data in lieu of traditional National Weather Service (NWS) data for dispersion models. We apply these data in an urban application where comparisons can be made between the two meteorological input data types. Using the U.S. Environment Protection Agency's American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD) air quality dispersion model, hourly and annual average concentrations of benzene are estimated for the Philadelphia, PA, area using both hourly MM5 model-generated meteorological output and meteorological data taken from the NWS site at the Philadelphia International Airport. Our intent is to stimulate a discussion of the relevant issues and inspire future work that examines many of the questions raised in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号