首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
南亚热带中幼龄针阔混交林生态化学计量特征   总被引:5,自引:0,他引:5  
为了解南亚热带中幼龄针阔混交林植物、凋落物和土壤生态化学计量特征,本研究以10-11 a、7-9 a和3-5 a林龄人工针阔混交林为研究对象,通过对植物叶片(乔木、灌木和草本)、凋落物及土壤的碳(C)、氮(N)和磷(P)含量及计量比分析,探讨了中幼龄针阔混交林生态化学计量特征、相互关系及其N、P养分限制。结果表明,1)针阔混交林乔木、灌木和草本叶片碳含量均值分别为502.88、472.18和438.31 mg·g-1,其叶片碳含量表现为乔木〉灌木〉草本;叶片全氮含量均值分别为15.87、19.61和15.72 mg·g-1,叶片全磷含量均值为1-09、1.24和0.91 mg·g-1,其叶片氮和磷含量均表现为灌木〉乔木〉草本;凋落物碳、氮和磷含量均值分别为497-07、11-36和0.45 mg·g-1,凋落物氮和磷含量均低于植物。2)针阔混交林乔木叶片C/N、C/P和N/P均值分别为34.43、517-06和15.63,灌木和草本叶片C/N、C/P和N/P均值分别为26.60和28.55、438.77和507.59、16.52和17.95,而凋落物C/N、C/P和N/P为46.50、1193.26和26.17;不同林龄杉木叶片N/P均低于14,表明杉木生长受N限制;10-11 a林龄阔叶树生长受N的限制,7-9 a和3-5 a林龄阔叶树生长受P的限制,灌木和草本生长基本受P限制。3)植物叶片全氮和全磷含量呈极显著正相关(P〈0.01),C/N与C/P呈极显著正相关(P〈0.01),而全磷含量与C/N、C/P、N/P呈极显著和显著负相关(P〈0.01,P〈0-05);土壤有机碳含量与土壤全氮含量、C/P、N/P呈极显著和显著正相关(P〈0.01,P〈0-05)。本研究为中幼龄人工林抚育及可持续经营提供科学参考。  相似文献   

2.
不同林龄阶段的松栎混交人工林碳储量研究   总被引:1,自引:0,他引:1  
以不同林龄的马尾松-麻栎(Pinus massoniana-Quercus acutissima)人工林为研究对象,为尽可能减少样木法测定生物量对森林资源的破坏,采取估算和实验测定相结合的方法,探讨了不同生长发育阶段生态系统碳储量的时空变化规律。结果表明:人工混交林生态系统碳储量随着林龄的增加而增加,且主要分布在乔木层和土壤层。随着林龄的增大,乔木层碳储量增加,马尾松碳储量占乔木层的比重呈先增加后降低趋势,20年生所占比重最大,可达61.53%,而麻栎则相反,35年生麻栎碳储量高达80.30 t·hm~(-2),占比重的55.33%,二者生长呈现互补趋势;灌木层和枯落物层碳储量随着林龄的增大呈现"n"型,20年生达到最高值,分别为13.00和1.87 t·hm~(-2);8年生林龄的草本层碳储量最大,为0.15 t·hm~(-2),随着林龄的增加而减小;土壤有机碳储量随着林龄的增大而增加,同一林龄土壤机碳碳储量在垂直分布上表现为随着土壤深度的增加,碳储量减少,有机碳碳储量主要集中在0~20 cm的土层。植被层碳储量的空间分布序列是:乔木层灌木层枯落物层草本层,混交林生态系统碳储量分布情况为8~20年生林碳储量分布一致:土壤乔木灌木枯落物草本,25~35年生分布一致:乔木土壤灌木枯落物草本。该研究认为马尾松-麻栎人工林生态系统碳储量随林龄增加的变化规律明显,碳汇潜力巨大,为该区人工碳汇林业的经营提供了依据。  相似文献   

3.
选取福建西北部地区多群落类型组成的常绿阔叶混交林为研究对象,通过典型样地调查法,对生态系统各个层次进行取样调查,采用“相对生长法”计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-外加热容量法。在此基础上,分析了该地区不同林龄常绿阔叶林生态系统碳储量及其格局特征,结果表明,(1)闽西北地区常绿阔叶林生态系统平均碳储量为260.63 t·hm-2。在每个发育阶段,各层片对整个生态系统碳储量的贡献率相对稳定,空间分布格局特征相似。幼龄林、中龄林、近熟林、成过熟林生态系统的碳储量分别为192.14、221.15、317.11和312.12 t·hm-2,基本表现出随林龄增加而逐渐增大的趋势。(2)乔木层、灌木层、草本层、凋落物层的平均碳质量分数分别为48.5%、46.9%、41.2%、44.0%,每个层片中,各器官的碳含量差异不大,乔木层、灌木层及草本层的碳质量分数表现出随层片高度降低而减小的趋势。土壤碳质量分数由表层到底层逐渐减小。0~10、10~20 cm土层碳质量分数均显著大于其余三个土层。(3)生物量碳储量在每个层片随着龄组不同,表现出不同的变化趋势。乔木层碳储量大小排序为近熟林﹥成过熟林﹥中龄林﹥幼龄林,灌木层与草本层在不同发育阶段的碳储量,均表现出以下规律:从幼龄林到中龄林不断增长,在中龄林达到最大值后,又随发育的进行显现出不断下降的趋势。随着地表凋落物现存量的不断增加,其碳储量也表现出幼龄林﹥中龄林﹥近熟林﹥成过熟林的趋势。土壤的平均碳储量为134.986 t·hm-2,随着林分发育,表现为成过熟林﹥近熟林﹥中龄林﹥幼龄林。  相似文献   

4.
森林更新是维持和扩大森林资源的主要途径,也是森林结构调整、森林可持续经营和构建多功能高效的森林生态系统的过程。在安徽南部的岭南林场,选择了马尾松(Pinus massoniana Lamb)人工林(MP)、杉木(Cunninghamia lanceolata)人工林(CF)、阔叶混交天然次生林(MB)和针阔混交人工次生林(MN)等4种具有典型代表性的森林群落类型,研究了不同更新方式形成的森林群落的碳储量结构特征。结果表明:(1)针阔混交次生林树干生物量密度最大,为(67.32±56.57)mg.hm-2,杉木人工林生物量密度最小,为(43.79±9.13)mg.hm-2,而马尾松树干生物量所占比例最大,为(64.04±1.49)%。阔叶混交次生林碳储量最高,为(126.47±90.75)mg.hm-2;(2)4种群落类型中,阔叶混交林与马尾松群落碳密度最大,分别为95.67和98.21mg.hm-2,杉木群落碳密度最小,为55.41 mg.hm-2。阔叶混交林中的灌木层生物量碳密度最大,为(17.438±24.627)mg hm-2,马尾松林的草本层和枯落层生物量碳密度最高,分别为(1.326±0.431)、(5.517±2.846)mg.hm-2;(3)阔叶混交林群落的地下碳储量最高,为(10.5±9.8)mg.hm-2,群落地下碳储量从大到小的顺序是阔叶混交林〉针阔混交林〉杉木林〉马尾松林。相应的群落地上碳储量从大到小的顺序是阔叶混交林〉针阔混交林〉马尾松林〉杉木林。杉木林根茎比(R/S)最大,为0.21±0.01,杉木林群落中的灌木层根茎比(R/S)最大,为1.61±0.11;(4)在阔叶混交林中,株数密度与乔木层、草本层的碳比例正相关。在杉木林群落中,平均胸径、株数密度与乔木层碳所占比例成负相关。除杉木林群落外,灌木层碳含量之比与胸径及密度等调查因子都呈负相关。  相似文献   

5.
为了解科尔沁沙地南缘小叶锦鸡儿(Caragana microphylla)和黄柳(Salix gordejevii)灌丛生态系统的固碳功能,在赤峰市敖汉旗风沙土区分别选择9个林龄序列的小叶锦鸡儿和9个林龄序列的黄柳典型灌丛人工林为研究对象。利用空间代替时间样地测量法来量化两种灌丛人工林灌木层、草本层、凋落物层、土壤层和生态系统的碳密度变化规律,分析了不同林龄灌丛生态系统碳密度和年碳汇速率的变化趋势,并拟合了林龄与碳密度和年碳汇速率方程。结果表明:小叶锦鸡儿和黄柳两种灌丛林灌木层、草本层、凋落物层、土壤层碳密度均随林龄的增加而增大;各层碳密度大小为:土壤层碳密度最大,分别占生态系统碳密度的60%和75%,灌木层碳密度次之,分别占生态系统碳密度的23%和38%,草本层、凋落物层碳密度最小,均占生态系统碳密度的1%左右;灌木层各器官碳密度均为枝根叶,草本层各器官碳密度均为地上部分地下部分;两种灌丛林的碳密度随时间的变化可用对数函数表述,生态系统年碳汇速率的变化可用乘幂式方程表述,林龄10 a时,年碳汇速率增长迅速,10 a时,年碳汇速率呈下降趋势。研究认为小叶锦鸡儿和黄柳灌丛群落碳密度随林龄增加的变化规律明显,具有一定的碳汇潜力;林龄10 a时为年碳汇速率增长迅速期,随着林龄的增加,年碳汇速率有下降的趋势,需对灌丛林进行有效的抚育管理。  相似文献   

6.
为促进沿海合理营林和碳库平衡,基于对福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局.结果表明,尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68、431.89-464.90、472.93-505.10 g/kg.相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P〈0.05).不同林分间乔木层的碳储量表现为木麻黄(32.89 t/hm^2)〉纹荚相思(31.33 t/hm^2)〉尾巨桉(30.20 t/hm^2),其中,乔木层各器官碳储量均以树干(10.92 t/hm^2、10.36 t/hm^2、15.00 t/hm^2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t/hm^2)〉纹荚相思(6.19 t/hm^2)〉木麻黄(4.57 t/hm^2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t/hm^2)〉纹荚相思(7.31 t/hm^2)〉尾巨桉(6.42 t/hm^2).这3种人工林生态系统总碳储量表现为木麻黄(45.48 t/hm^2)〉纹荚相思(44.83 t/hm^2)〉尾巨桉(43.04 t/hm^2),且碳储量分布格局均为乔木层〉土壤层〉凋落物层〉草本层.因此,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄都是很好的固碳树种.  相似文献   

7.
基于内蒙古赛罕乌拉森林生态系统定位研究站山杨(Populus davidiana Dode)天然次生林幼龄林、中龄林、近熟林、成熟林及过熟林生物量调查,探讨了不同龄组山杨天然次生林单株木、林分、林下植被和枯落物的生物量及群落碳储量的时空变化规律。结果表明:随林龄的增大,山杨天然次生林木和各器官生物量总体呈增加趋势,树干所占比例增加,中龄林增加尤为明显;林下植被层、枯落物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层〉枯落物层〉林下植被层。幼龄林、中龄林、近熟林、成熟林和过熟林群落的碳储量分别为27.146 6、53.545 1、60.889 8、77.915 8、79.135 3t.hm-2,乔木层碳储量分别为22.206 5、47.215 7、52.056 3、68.445 3、68.773 1 t.hm-2,枯落物层和林下植被层碳储量平均值分别为5.814 4、2.172 7 t.hm-2。乔木层、枯落物层和林下植被层碳储量占总量的平均率分别为86.05%、10.39%和3.57%。研究认为山杨天然次生林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大;中龄林为碳储量增长迅速期,且持续较长一段时间,是林分管理的关键阶段;自然稀疏有利于促进林木生长,林分碳储量并未随林分密度下降而减小。  相似文献   

8.
低效杉木(Cunninghamia lanceolata)人工林的改造在我国林业建设中占有重要地位,其目标主要是促进低效杉木人工林转变为结构复杂的针阔混交林,从而提高其生态系统功能。以南亚热带地区杉木林改造后的针阔混交林为研究对象,比较了不同树种组合模式的土壤理化性质、碳储量和乔木层生物多样性的差异,并采用主成分分析对不同树种组合模式进行综合评价。结果表明,土壤理化性质在不同树种组合模式间存在显著差异。生态系统碳储量介于110.01~183.24 t·hm-2之间,主要存储于土壤层(70.1%~85.7%),其次是植被层(11.5%~25.8%)和凋落物层(0.8%~5.2%);植被层中85%以上的碳集中于乔木层。不同树种组合模式的生物多样性差异明显,其中丰富度指数的差异最大。采用主成分分析的方法,将26个评价指标提取为5个主成分,可反映针阔混交林改造模式92.7%的变异性。综合评价得分表明,在本地区对杉木林进行皆伐改造时,优化的树种组合模式为:(1)杉木+阴香(Cinnamomum burmanni)+米老排(Mytilaria laosensis)+红锥(Castanopsis hystrix)+火力楠(Michelia macclurei);(2)杉木+米老排+阴香+山杜英(Elaeocarpus sylvestris)+枫香(Liquidambar formosana);(3)杉木+红花荷(Rhodoleia championii)+刺桐(Erythrina variegata)+火焰木(Spathodea campanulata)+灰木莲(Mangletia glauca)。研究结果可为南亚热带地区低效针叶林改造、生态林经营及生态系统服务功能评估提供参考。  相似文献   

9.
滇中亚高山典型森林生态系统碳储量及其分配特征   总被引:1,自引:0,他引:1  
同一区域不同植被类型的生长习性、土壤类型、林分立地状况等的差异,可能导致生态系统碳储量的变化。采用标准地调查和生物量实测相结合的方法,对云南省新平县磨盘山国家森林公园5种典型森林类型——华山松(Pinusarmandii)林、云南松(Pinus yunnanensis)林、滇油杉(Keteleeria evelyniana)林、高山栎(Quercus aquifolioides)林和常绿阔叶林各器官(叶、枝、干、皮和根)碳含量、生物量、碳储量及分配特征进行了比较研究,探讨该区域典型森林生态系统碳储量及其分配格局,揭示滇中亚地区各林分植被层的碳源-汇变化和土壤各层碳动态规律。结果表明,(1)5种林分类型各器官碳含量在45.60%~57.60%之间波动,乔木层、灌木层、草本层和凋落物生物量分别占植被层的56.46%~92.28%、1.12%~13.15%、0.003%~2.19%和6.21%~30.26%。各林分类型植被层碳储量大小表现为:华山松常绿阔叶林云南松滇油杉高山栎。(2)5种林分的土壤碳储量随着土层深度的增加而显著降低,主要集中在0~30 cm表土层,占总碳储量的52.6%~79.8%;0~60 cm土壤碳储量大小顺序表现为:滇油杉常绿阔叶林华山松高山栎云南松。(3)5种林分的生态系统碳储量表现为:常绿阔叶林华山松滇油杉云南松高山栎,其中乔木层和土壤层之和占总碳储量的95.1%~99.2%,林下植被层占比较低。华山松、滇油杉和常绿阔叶林生态系统具有较高的碳储量,云南松林和高山栎林植被碳储潜力较大,应通过制定出切实可行的森林管理措施,提高林分质量、增加林分碳密度,发挥其更大碳汇功能。  相似文献   

10.
大兴安岭南段华北落叶松人工林碳储量及分配特征研究   总被引:1,自引:0,他引:1  
以大兴安岭南段内蒙古赛罕乌拉森林生态系统国家定位观测研究站为研究区,以华北落叶松(Larix prinicipis)人工林为研究对象,采用野外样地实测调查与室内分析相结合的方法对华北落叶松人工林碳储量及分配特征进行了研究。结果表明:不同林龄华北落叶松人工林生态系统碳储量表现为32 a(205.83 t·hm~(-2))28 a(186.38 t·hm~(-2))16 a(155.84 t·hm~(-2));华北落叶松人工林植被层碳储量为9.11~26.73 t·hm~(-2),占总碳储量的5.85%~14.0%,随着林龄的增加而先增加后减少;枯落物层碳储量为0.29~0.40 t·hm~(-2),占总碳储量的0.19%,随着林龄的增加其所占比例趋于稳定;土壤层碳储量表现为为32 a(178.70t·hm~(-2))28 a(159.92 t·hm~(-2))16 a(146.44 t·hm~(-2)),占总碳储量的比例为86.82%~93.96%,随着林龄的增加其所占比例呈递减趋势;不同林龄阶段碳储量均表现为土壤层植被层枯落物层,地下地上;植被层碳储量以乔木层最大(6.85~26.46t·hm~(-2)),占比为75.21%~98.99%,而乔木层碳储量主要分布在树干(2.53~14.98 t·hm~(-2)),占乔木层碳储量的比例为36.93%~56.61%,且随林龄的增加而增加;土壤层碳储量主要集中在0~30 cm土层,占土壤层总碳储量的70.78%~78.82%。研究结果可为华北落叶松人工林经营管理和高效培育提供理论依据。  相似文献   

11.
以徐州侧柏Platycladus orientalis(Linn)Franco人工林为研究对象,运用生物量转化方程及土壤调查数据探讨了1 679、2 250和3 074株.hm-2的3种密度对生态系统碳储量的影响及其机理。结果表明,①乔木层、土壤层和生态系统的碳储量均随林分密度的增加而明显减少,灌草层碳储量在低林分密度最大,而枯落物层碳储量在中林分密度最大。低林分密度生态系统的碳储量是94.11 t.hm-2,分别是中密度和高密度生态系统的碳储量1.19倍和1.28倍,而这种差异主要是由乔木层和土壤层碳储量差异引起的。②林分密度对细根生物量的影响不显著(P〉0.05),而细根形态随林分密度的增加表现为低级根中1、2级根直径变粗,根长先变长后变短,比根长变短(P〈0.05);而高级根中的5级根直径显著变细,根长和比根长变长(P〉0.05)。③林分密度对细根生物量的影响与乔木层、土壤层和生态系统碳储量的变化规律具有较高的一致性,均为低密度下最大,高密度下最小。因此,细根生物量可能是导致系统碳储量变化的主要因素之一。  相似文献   

12.
提高碳汇潜力:量化树种和造林模式对碳储量的影响   总被引:3,自引:0,他引:3  
王春梅  王汝南  蔺照兰 《生态环境》2010,19(10):2501-2505
全球气候变化背景下,造林再造林固定的碳可以抵消温室气体减限排量。通过造林再造林增加森林面积可以增加林业碳汇,在土地面积有限的情况下,提高造林质量——在有限的造林面积上固定更多的碳是十分必要的。树种和造林模式的选择是增加森林生态系统碳汇的重要管理决策。文章综述了树种和造林模式对生态系统的碳储量的影响。树种从生物量的积累,凋落物和土壤碳储存,以及木材密度、碳贮存量等几个方面探讨其对生态系统碳库的影响。混交林能充分利用立地条件、改善树木营养状况,并且可以减少病虫害和森林火灾。同时分析了我国在森林经营方面存在的问题和改善途径,以期为该领域的研究提供参考。  相似文献   

13.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

14.
在群落调查的基础上,分析了古田山自然保护区常绿阔叶林的群落类型和群落物种多样性特征.结果表明:古田山自然保护区常绿阔叶林主要有6种类型(群系),即甜槠林、栲树林、野含笑-钩栗林、青冈林、虎皮楠-甜槠林、乌冈栎-青冈林,并对各群落类型的结构和物种组成进行了描述.从各群落的外貌、结构和种类组成上看,均具有我国典型常绿阔叶林的基本特征.不同群落类型其物种多样性大小不同,栲树林和野含笑-钩栗林物种多样性较高,虎皮楠-甜槠林和乌冈栎-青冈林物种多样性较低.在群落垂直结构中,灌木层→乔木层→草本层物种多样性依次降低,乔木层与灌木层之间物种多样性差异不显著,草本层的物种丰富度、物种多样性指数均明显小于乔木层和灌木层.与邻近4个山地常绿阔叶林物种多样性相比较,古田山常绿阔叶林物种多样性比纬度位置高的黄山和大别山要大,但比纬度位置低的乌岩岭和缙云山小.  相似文献   

15.
杉木观光木混交林群落的能量生态   总被引:13,自引:3,他引:10  
对杉木观光木混交林群落能量的研究结果表明:混交林中观光木地上部分灰分含量以皮最高,而杉则以叶最高,两者GCV(干重热值)和AFCV(去灰分热值)均以叶为最高;观光木、杉木地下各部分的灰分含量均随径级的减小而增加,GCV均以粗根最高,细根最低;观光木的平均灰分含量高于杉木,但GCV和AFCV均低于杉木;从乔木层、灌木层到草本层,灰分含量依次增加,GCV和AFCV则依次降低,混交林群落的能量现存量公占群落的很小一部分,而其能量年净增量、归还量和净固定量却占有一定比重,混交林群落的太阳能转化率为1.57%,而纯林为1.44%,表明杉观混交林是一种能量生产力较高和维持地力能力较强的杉阔混交类型。同时,混交林的能量累积比大于纯林,能量流动速率则低于纯林;乔木层的能量累积比高于林下植被,能量流动速率则低于林下植被,从能量的角度看,构建合理的群落结构必须选择高能量累积比的乔木层树种,同时须促进能量流动速率快的林下植被的发育以维持和提高地力。  相似文献   

16.
33 a生福建柏人工林群落能量的研究   总被引:7,自引:0,他引:7  
在福建三明对33 a生福建柏和杉木群落能量的研究结果表明福建柏群落和杉木群落干重热值和去灰分热值均以树叶最高,最低的为草本叶和茎或草本根;两个群落不同层次干重热值和去灰分热值的大小均为乔木层>林褥层>灌木层>草本层;两个群落乔木层干重热值和去灰分热值均以干皮最低. 两个群落不同组分灰分含量差异悬殊,最高的均为草本叶和茎,最低的均为干材. 福建柏的干重热值、去灰分热值、灰分含量均高于杉木,表明福建柏生成单位重量生物量的能量耗费比杉木多. 福建柏群落的能量现存量、年净增量、年归还量(通过凋落物)、年净固定量分别是杉木群落的0.97倍、1.65倍、1.15倍和1.36倍. 福建柏群落的太阳能转化效率为1.42%,而杉木群落为1.04%. 林下植被虽然能量现存量仅占群落的很小一部分,但在能量流动中占有重要地位,林下植被的能量流动速率比乔木层大得多,这对维持和提高地力较为有利. 33 a生福建柏群落仍然具有较大的能量年净增量,轮伐期应比杉木长;具有较高的能量流动速率,地力维护的能力也较强,是优良的造林树种. 福建柏经营密度应适当降低,发育群落林下植被以改良地力. 表5 参12  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号