首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: We present an ecological risk assessment methodology at the watershed level for freshwater ecosystems. The major component is a pollutant transport and fate model (a modified EUTROMOD) with an integrated uncertainty analysis utilizing a two-phase Monte Carlo procedure. The uncertainty analysis methodology distinguishes between knowledge uncertainty and stochastic variability. The model assesses the ecological risk of lentic (lake) ecosystems in response to the stress of excess phosphorus resulting in eutrophication. The methodology and model were tested on the Wister Lake watershed in Oklahoma with the lake and its trophic state as the endpoint for ecological risk assessment. A geographic information system was used to store, manage, and manipulate spatially referenced data for model input.  相似文献   

2.
The study described in this article incorporates stakeholders' views on aquatic invasion processes and combines expert analysis with information from field work into an evaluation exercise. Management scenarios are designed based on available technical data and stakeholders' perceptions. These scenarios are evaluated using the Social Multi-Criteria Evaluation framework employing the NAIADE model. Two evaluations are carried out, technical and social. Social acceptance of different management scenarios, distribution of costs and benefits, and attribution of responsibility are discussed. The case study was carried out on Lake Izabal, a body of water connected to the Caribbean Sea in Northeastern Guatemala. In 2000, local fishermen reported the presence of an alien species in the lake, the macrophyte Hydrilla verticillata. Two years later, this alien species was established around the entire lakeshore, damaging the ecosystem, endangering native species and the subsistence of local inhabitants through impacts on transportation, fishing practices, and tourism.  相似文献   

3.
Landscape connectivity: A conservation application of graph theory   总被引:5,自引:0,他引:5  
We use focal-species analysis to apply a graph-theoretic approach to landscape connectivity in the Coastal Plain of North Carolina. In doing so we demonstrate the utility of a mathematical graph as an ecological construct with respect to habitat connectivity. Graph theory is a well established mainstay of information technology and is concerned with highly efficient network flow. It employs fast algorithms and compact data structures that are easily adapted to landscape-level focal species analysis. American mink (Mustela vison) and prothonotary warblers (Protonotaria citrea) share the same habitat but have different dispersal capabilities, and therefore provide interesting comparisons on connections in the landscape. We built graphs using GIS coverages to define habitat patches and determined the functional distance between the patches with least-cost path modeling. Using graph operations concerned with edge and node removal we found that the landscape is fundamentally connected for mink and fundamentally unconnected for prothonotary warblers. The advantage of a graph-theoretic approach over other modeling techniques is that it is a heuristic framework which can be applied with very little data and improved from the initial results. We demonstrate the use of graph theory in a metapopulation context, and suggest that graph theory as applied to conservation biology can provide leverage on applications concerned with landscape connectivity.  相似文献   

4.
In the last few decades, trampling has become a cause of major disturbance to natural areas. Trampling can occur regularly either seasonally or throughout the year, or as a single impact depending on a recreational activity or an event. This study, carried out on a coastal heathland in north Brittany (France), was based on the hypothesis that the vegetation response can differ depending on whether the trampling is repeated or due to a single event. The aim was to compare the resistance and the short-term recovery capacity of selected species in coastal heathland communities subjected to a trampling experiment, applied once or five times (with equal total number of passes from 0 to 800). The temporal distribution of the trampling did not affect the response of Erica ciliaris, whereas for Erica cinerea and Ulex gallii, trampling was slightly less damaging when applied once rather than five times. These differences could be linked to the lower resistance and the higher recovery capacity of E. ciliaris, compared with the two other species. This study also emphasized the influence of site location by comparing observations with previous studies. Plant resistance calculated here appeared to be lower than that calculated for a less stressful site. The relationship between plant traits and response to trampling was also investigated. The effects of the different times between disturbance application and observations of the short-term response of woody vegetation to experimental trampling is also discussed.  相似文献   

5.
The development of ecologically sound water allocation strategies that account for the needs of riverine ecosystems is a pressing issue, especially in semiarid river basins. In the Aral Sea Basin, a search for strategies to mitigate ecological and socioeconomic deterioration has been in process since the early 1990s. The Geographic Information System–based simulation tool TUGAI has been developed to support the policy determination process by providing a simple, problem-oriented method to assess ecological effects of alternative water management strategies for the Amudarya River. It combines a multiobjective water allocation model with simple, spatially explicit statistical and rule-based models of landscape dynamics. Changes in environmental conditions are evaluated by a fuzzy habitat suitability index for Populus euphratica, which is the dominant species of the characteristic riverine Tugai forests. Water management scenarios can be developed by altering spatiotemporal water distribution in the delta area or the amount of water inflow into the delta. Outcomes of scenario analysis are qualitative comparisons of the ecological effects of different options for a time period of up to 28 years. The given approach utilizes different types of knowledge, from quantitative hydrological data to qualitative local expert knowledge. The main purpose of the tool is to integrate the knowledge in a comprehensive way to make it available for discussions on alternative policies in moderated workshops with stakeholders. In this article, the modules of the tool, their integration, and three hypothetical scenarios are presented. Based on the experience gained when developing the TUGAI tool, we propose that the general framework can be transferred to other areas where tradeoffs in water allocation between the environment and other water users are of major concern. The potential for a simulation tool to structure and inform a complex resource management situation by involving local experts and stakeholders in the development of possible future scenarios will become increasingly valuable for transparent and participatory resource management.  相似文献   

6.
Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.  相似文献   

7.
The cerco-fixo is an artisanal fishing trap widely used by traditional communities in the estuarine region of the southern coast of the state of São Paulo, Brazil. The primary goal of the study was to investigate, through ethnobotanical and ecological approaches, the use of plant species by traditional fishermen to build the cerco-fixo at Cardoso Island State Park and Cananéia Island. Ethnobotanical data were collected through interviews, direct observation, plant collection and identification, and document analysis. An ecological evaluation was also done comparing five 20 × 20 m plots in a managed area to five 20 × 20m plots in an unmanaged area, both within arboreal sandy soil vegetation called restinga arbórea, found within the Brazilian Atlantic Forest domain. This study involved 34 fishermen living at Cardoso and Cananéia Islands. The fishermen know more than 90 Atlantic Forest plant species that can be used to build the cerco-fixo. Tree species from the family Myrtaceae were the most quoted in the interviews. With respect to the ecological evaluation, the cluster analyses showed greater heterogeneity in terms of floristic composition (i.e. greater floristic dissimilarity) within the plots of the managed area. The analyses of diversity showed a slightly higher species richness and slightly lower values for Shannon, Simpson, Hurlbert’s PIE and Evenness indices in the managed area (59 species; H′ = 3.28; 1/D = 10.77; E = 0.80; Hurlbert’s PIE = 0.91) compared to the unmanaged area (54 species; H′ = 3.39; 1/D = 20.21; E = 0.85; Hurlbert’s PIE = 0.95). The Hutcheson’s t test showed no significant difference between both areas’ Shannon diversity indices (t: −1.04; p: 0.30). These results are attributed to the greater dominance of the palm species Euterpe edulis Mart. in the managed area (28.2% of the trees sampled at this area; n = 118), which equals twice the percentage of individuals of the same species found for the unmanaged area (14.6% of the sampled trees; n = 48). We discuss the impact of the fishermen’s harvesting practices in the managed area with an emphasis on three main points: (1) the harvesting practices are likely not contributing to a decrease in diversity in the managed area; (2) the greater heterogeneity in terms of floristic composition found for the managed area may reflect a mosaic pattern created by the opening of small tree-gaps distributed across this area over the course of more than 50 years; (3) the disturbance promoted by the fishermen’s harvesting practices can be compared to natural disturbances of low impact that create mosaic patterns in tropical forests. This study emphasizes the prominence of the human dimension in ecological processes and the importance of considering the perspectives of local people when discussing the conservation of the natural environments in which these people live.  相似文献   

8.
Parametric (propagation for normal error estimates) and nonparametric methods (bootstrap and enumeration of combinations) to assess the uncertainty in calculated rates of nitrogen loading were compared, based on the propagation of uncertainty observed in the variables used in the calculation. In addition, since such calculations are often based on literature surveys rather than random replicate measurements for the site in question, error propagation was also compared using the uncertainty of the sampled population (e.g., standard deviation) as well as the uncertainty of the mean (e.g., standard error of the mean). Calculations for the predicted nitrogen loading to a shallow estuary (Waquoit Bay, MA) were used as an example. The previously estimated mean loading from the watershed (5,400 ha) to Waquoit Bay (600 ha) was 23,000 kg N yr−1. The mode of a nonparametric estimate of the probability distribution differed dramatically, equaling only 70% of this mean. Repeated observations were available for only 8 of the 16 variables used in our calculation. We estimated uncertainty in model predictions by treating these as sample replicates. Parametric and nonparametric estimates of the standard error of the mean loading rate were 12–14%. However, since the available data include site-to-site variability, as is often the case, standard error may be an inappropriate measure of confidence. The standard deviations were around 38% of the loading rate. Further, 95% confidence intervals differed between the nonparametric and parametric methods, with those of the nonparametric method arranged asymmetrically around the predicted loading rate. The disparity in magnitude and symmetry of calculated confidence limits argue for careful consideration of the nature of the uncertainty of variables used in chained calculations. This analysis also suggests that a nonparametric method of calculating loading rates using most frequently observed values for variables used in loading calculations may be more appropriate than using mean values. These findings reinforce the importance of including assessment of uncertainty when evaluating nutrient loading rates in research and planning. Risk assessment, which may need to consider relative probability of extreme events in worst-case scenarios, will be in serious error using normal estimates, or even the nonparametric bootstrap. A method such as our enumeration of combinations produces a more reliable distribution of risk.  相似文献   

9.
Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change.  相似文献   

10.
Sensitivity analyses for the preferential flow model MACRO were carried out using one-at-a-time and Monte Carlo sampling approaches. Four different scenarios were generated by simulating leaching to depth of two hypothetical pesticides in a sandy loam and a more structured clay loam soil. Sensitivity of the model was assessed using the predictions for accumulated water percolated at a 1-m depth and accumulated pesticide losses in percolation. Results for simulated percolation were similar for the two soils. Predictions of water volumes percolated were found to be only marginally affected by changes in input parameters and the most influential parameter was the water content defining the boundary between micropores and macropores in this dual-porosity model. In contrast, predictions of pesticide losses were found to be dependent on the scenarios considered and to be significantly affected by variations in input parameters. In most scenarios, predictions for pesticide losses by MACRO were most influenced by parameters related to sorption and degradation. Under specific circumstances, pesticide losses can be largely affected by changes in hydrological properties of the soil. Since parameters were varied within ranges that approximated their uncertainty, a first-step assessment of uncertainty for the predictions of pesticide losses was possible. Large uncertainties in the predictions were reported, although these are likely to have been overestimated by considering a large number of input parameters in the exercise. It appears desirable that a probabilistic framework accounting for uncertainty is integrated into the estimation of pesticide exposure for regulatory purposes.  相似文献   

11.
The phase of precipitation at the land surface is critical to determine the timing and amount of water available for hydrological and ecological systems. However, there are few techniques to directly observe the precipitation phase and many prediction tools apply a single temperature threshold (e.g., 0°C) to determine phase. In this paper, we asked two questions: (1) what is the accuracy of default and station optimized daily temperature thresholds for predicting precipitation phase and (2) what are the regions and conditions in which typical temperature‐based precipitation phase predictions are most suited. We developed a ground truth dataset of rain vs. snow using an expert decision‐making system based on precipitation, snow depth, and snow water equivalent observations. This dataset was used to evaluate the accuracy of three temperature‐threshold‐based techniques of phase classification. Optimizing the temperature threshold improved the prediction of precipitation phase by 34% compared to using 0°C threshold. Developing a temperature threshold based on station elevation improved the error by 12% compared with using the 0°C temperature threshold. We also found the probability of snow as a function of temperature differed among ecoregions, which suggests a varied response to future climate change. These results highlight a current weakness in our ability to predict the effects of regional warming that could have uneven impacts on water and ecological resources.  相似文献   

12.
Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004–March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum (Didelphis virginiana), nine-banded armadillo (Dasypus novemcinctus), striped skunk (Mephitis mephitis), and northern raccoon (Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should focus on creating underpasses or using other means to reduce roadkill rates.  相似文献   

13.
This paper examines the impact of climate change on the decision of farmers to engage or not to engage in livestock activities and also on the choice of different livestock species in Kenya. To this end, cross‐sectional household level data supplemented by long‐term averages of climate data are used. The probit model is employed to derive the response of the probability of engaging in livestock activities to climate change. Probit and multivariate probit methods are employed to model the choice of different livestock species. Atmosphere–ocean global circulation models are used to project the impact of different climate scenarios on the probability of engaging in livestock activities and also of adopting different livestock species according to variations in climate. The results suggest that farmers adapt livestock management decisions to climate change. At low levels of temperature increase, the probability of engaging in livestock activities falls, but at higher levels of climate change, the probability rises. The results further show that as it gets hotter, farmers change their livestock choices from dairy cattle and sheep to beef cattle and goats.  相似文献   

14.
In the United States, environmental regulatory agencies are required to use “best available” scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.  相似文献   

15.
Integrating Local and Scientific Knowledge: An Example in Fisheries Science   总被引:8,自引:0,他引:8  
Attempting to predict the spatial dynamics fish stocks, as required for management, is an ominous task given our incomplete understanding of biological and ecological mechanisms underpinning behavioral responses of fish. Large gaps still exist in our basic scientific knowledge. Nonetheless, the knowledge of fishers and fishery managers is not incorporated into our scientific analyses, even though such information is rich in observation since knowledge of fish behavior and distribution is a prerequisite for their profession. Combining such observations with more conventional scientific studies and theoretical interpretations provides a means by which we may bridge some gaps in our knowledge. Presented here is an example of how both local and scientific knowledge can be integrated in a heuristic model. The model, CLUPEX, is developed in the framework of a fuzzy logic expert system and uses linguistic statements written in natural language to capture and combine knowledge sources in the form of IF … THEN rules. The rules are inferred from interviews with experts and fishery professionals including fishers, fishery managers, scientists, and First Nations people. The knowledge base, comprised of the set of rules, is flexible in the sense that it can easily be modified to add additional information or change current information. Using input pertaining to biotic and abiotic environmental conditions, CLUPEX uses the rules to provide quantitative and qualitative predictions on the structure, dynamics and mesoscale distribution of shoals of migratory adult herring during different life stages of their annual life cycle.  相似文献   

16.
From 1992–1996, 3204 artificial roosts of 9 types were placed in woodlots near Indianapolis International Airport in an effort to provide habitat for the federally-endangered Indiana myotis (Myotis sodalis) and to determine the feasibility of using these structures to manage bats in a rapidly developing suburban area. We surveyed these structures at least annually during 1992–1999 and found only northern myotis (Myotis septentrionalis) regularly using the structures. Four other species were occasionally found using structures including big brown bats (Eptesicus fuscus, n = 14 individuals), little brown myotis (Myotis lucifugus, n = 2), Indiana myotis (Myotis sodalis, n = 2), and one silver-haired bat (Lasionycteris noctivagans). Single, triple, and Missouri-style batboxes were almost always used, rather than the six other types of experimental roosts that had been in place. However, after 10 years in place, it appears that Indiana bats are acclimated to boxes, as 6 of them were being used rather regularly by Indiana myotis. Bat boxes can provide roosting habitat for some species under conditions where few suitable roosts exist, but assuring an abundance of natural habitats is usually more desirable for conservation of tree-roosting bats.  相似文献   

17.
An Approach Toward Understanding Wildlife-Vehicle Collisions   总被引:1,自引:0,他引:1  
Among the most conspicuous environmental effects of roads are vehicle-related mortalities of wildlife. Research to understand the factors that contribute to wildlife-vehicle collisions can be partitioned into several major themes, including (i) characteristics associated with roadkill hot spots, (ii) identification of road-density thresholds that limit wildlife populations, and (iii) species-specific models of vehicle collision rates that incorporate information on roads (e.g., proximity, width, and traffic volume) and animal movements. We suggest that collision models offer substantial opportunities to understand the effects of roads on a diverse suite of species. We conducted simulations using collision models and information on Blanding’s turtles (Emydoidea blandingii), bobcats (Lynx rufus), and moose (Alces alces), species endemic to the northeastern United States that are of particular concern relative to collisions with vehicles. Results revealed important species-specific differences, with traffic volume and rate of movement by candidate species having the greatest influence on collision rates. We recommend that future efforts to reduce wildlife-vehicle collisions be more proactive and suggest the following protocol. For species that pose hazards to drivers (e.g., ungulates), identify collision hot spots and implement suitable mitigation to redirect animal movements (e.g., underpasses, fencing, and habitat modification), reduce populations of problematic game species via hunting, or modify driver behavior (e.g., dynamic signage that warns drivers when animals are near roads). Next, identify those species that are likely to experience additive (as opposed to compensatory) mortality from vehicle collisions and rank them according to vulnerability to extirpation. Then combine information on the distribution of at-risk species with information on existing road networks to identify areas where immediate actions are warranted.  相似文献   

18.
19.
Uncertainty and risk in wildland fire management: a review   总被引:3,自引:0,他引:3  
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making.  相似文献   

20.
Introduced species have created environmental benefits and unanticipated disasters so a priori assessments of species introductions are needed for environmental management. A checklist for assessing impacts of introduced species was developed from studies of introduced species and recommendations for planning introductions. Sterile, triploid grass carp (Ctenopharyngodon idella) are just beginning to be used as a biocontrol agent for the management of aquatic vegetation in open waterways. Potential impacts of grass carp in open systems were identified by reviewing grass carp biology relative to the impact assessment checklist. The potential consequences of introduced grass carp were reviewed for one case study. The case study demonstrated that conclusions about potential impacts and monitoring needs can be made despite incomplete information and uncertainty. Indicators of environmental impact and vulnerability of host systems were grouped into six categories: population control, hybridization, diseases and parasites, habitat alterations, biological effects, and management issues. Triploid grass carp can significantly alter habitat and biological resources through the secondary effects of reductions in aquatic vegetation. Potential impacts and significant uncertainties involve fish dispersions from plant control areas, inability to control vegetation loss, loss of diverse plant communities and their dependent species, and conflicts with human use of the water resource. Adequate knowledge existed to assess most potential consequences of releasing large numbers of triploid grass carp in Guntersville Reservoir, Alabama. However, the assessment of potential impacts indicated that moderate, incremental stockings combined with monitoring of vegetation and biological resources are necessary to control the effects of grass carp and achieve desirable, intermediate plant densities. Cooperators: Auburn University (Alabama Agricultural Experiment Station, Department of Fisheries and Allied Aquacultures, Department of Zoology and Wildlife Sciences), US Fish and Wildlife Service, Alabama Game and Fish Division, and the Wildlife Management Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号