首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
    
Freshwater ecosystems and their bordering wetlands and riparian zones are vital for human society and biological diversity. Yet, they are among the most degraded ecosystems, where sharp declines in biodiversity are driven by human activities, such as hydropower development, agriculture, forestry, and fisheries. Because freshwater ecosystems are characterized by strongly reciprocal linkages with surrounding landscapes, human activities that encroach on or degrade riparian zones ultimately lead to declines in freshwater–riparian ecosystem functioning. We synthesized results of a symposium on freshwater, riparian, and wetland processes and interactions and analyzed some of the major problems associated with improving freshwater and riparian research and management. Three distinct barriers are the lack of involvement of local people in conservation research and management, absence of adequate measurement of biodiversity in freshwater and riparian ecosystems, and separate legislation and policy on riparian and freshwater management. Based on our findings, we argue that freshwater and riparian research and conservation efforts should be integrated more explicitly. Best practices for overcoming the 3 major barriers to improved conservation include more and sustainable use of traditional and other forms of local ecological knowledge, choosing appropriate metrics for ecological research and monitoring of restoration efforts, and mirroring the close links between riparian and freshwater ecosystems in legislation and policy. Integrating these 3 angles in conservation science and practice will provide substantial benefits in addressing the freshwater biodiversity crisis.  相似文献   

2.
    
Estimates of temporal trends in species’ occupancy are essential for conservation policy and planning, but limitations to the data and models often result in very high trend uncertainty. A critical source of uncertainty that degrades scientific credibility is that caused by disagreement among studies or models. Modelers are aware of this uncertainty but usually only partially estimate it and communicate it to decision makers. At the same time, there is growing awareness that full disclosure of uncertainty is critical for effective translation of science into policies and plans. But what are the most effective approaches to estimating uncertainty and communicating uncertainty to decision makers? We explored how alternative approaches to estimating and communicating uncertainty of species trends could affect decisions concerning conservation status of freshwater fishes. We used ensemble models to propagate trend uncertainty within and among models and communicated this uncertainty with categorical distributions of trend direction and magnitude. All approaches were designed to fit an established decision-making system used to assign species conservation status by the New Zealand government. Our results showed how approaches that failed to fully disclose uncertainty, while simplifying the information presented, could hamper species conservation or lead to ineffective decisions. We recommend an approach that was recently used effectively to communicate trend uncertainty to a panel responsible for setting the conservation status of New Zealand's freshwater fishes.  相似文献   

3.
    
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号