首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

2.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

3.
Loss of natural forests by forest clearcutting has been identified as a critical conservation challenge worldwide. This study addressed forest fragmentation and loss in the context of the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status, and ecosystem services. Through retrospective analysis of satellite images, we assessed a 50- to 60-year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. This period broadly covers the whole forest clearcutting period; thus, our approach and results can be applied to comprehensive impact assessment of industrial forest management. The entire study region covers close to 46,000 km2 of forest-dominated landscape in a late phase of transition from a natural or near-natural to a land-use modified state. We found a substantial loss of intact forest, in particular of large, contiguous areas, a spatial polarization of remaining forest on regional scale where the inland has been more severely affected than the mountain and coastal zones, and a pronounced impact on interior forest core areas. Salient results were a decrease in area of the largest intact forest patch from 225,853 to 68,714 ha in the mountain zone and from 257,715 to 38,668 ha in the foothills zone, a decrease from 75% to 38% intact forest in the inland zones, a decrease in largest patch core area (assessed by considering 100-m patch edge disturbance) from 6114 to 351 ha in the coastal zone, and a geographic imbalance in protected forest with an evident predominance in the mountain zone. These results demonstrate profound disturbance of configuration of the natural forest landscape and disrupted connectivity, which challenges the establishment of functional green infrastructure. Our approach supports the identification of forests for expanded protection and conservation-oriented forest landscape restoration.  相似文献   

4.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

5.
Previous assessments of the effectiveness of protected areas (PAs) focused primarily on changes in human pressure over time and did not consider the different human-pressure baselines of PAs, thereby potentially over- or underestimating PA effectiveness. We developed a framework that considers both human-pressure baseline and change in human pressure over time and assessed the effectiveness of 338 PAs in China from 2010 to 2020. The initial state of human pressure on PAs was taken as the baseline, and changes in human pressure index (HPI) were further analyzed under different baselines. We used the random forest models to identify the management measures that most improved effectiveness in resisting human pressure for the PAs with different baselines. Finally, the relationships between the changes in the HPI and the changes in natural ecosystems in PAs were analyzed with different baselines. Of PAs with low HPI baselines, medium HPI baselines, and high HPI baselines, 76.92% (n=150), 11.11% (n=12), and 22.86% (n=8) , respectively, showed positive effects in resisting human pressure. Overall, ignoring human-pressure baselines somewhat underestimated the positive effects of PAs, especially for those with low initial human pressure. For PAs with different initial human pressures, different management measures should be taken to improve effectiveness and reduce threats to natural ecosystems. We believe our framework is useful for assessing the effectiveness of PAs globally, and we recommend it be included in the Convention on Biological Diversity Post-2020 Strategy.  相似文献   

6.
Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land‐sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land‐sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small‐scale, land‐sparing coffee‐production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest‐dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well‐defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large‐scale land‐sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land‐use patterns. Un Método para Reservar Tierras a Pequeña Escala para Conservar la Biodiversidad en Paisajes Agrícolas Tropicales  相似文献   

7.
Because of the significant impacts on both human interests and bird conservation, it is imperative to identify patterns and anticipate drivers of human–bird conflicts (HBCs) worldwide. Through a global systematic review, following the PRISMA 2020 guidelines, we analyzed the socioeconomic factors and bird ecological traits driving the degree of knowledge and extent of HBCs. We included 166 articles published from 1971 to 2020 in our analyses through which we built a profile of the socioeconomic conditions of 52 countries with reported conflicts and the ecological traits of the 161 bird species involved in HBCs. Although HBC expanded worldwide, it had the greatest impact in less-developed countries (estimate 0. 66 [SE 0.13], p< 0.05), where agriculture is critical for rural livelihoods. Species with a relatively greater conflict extent had a relatively broader diet (estimate 0.80 [SE 0.22], p<0.05) and an increasing population trend (estimate 0.58 [SE 0.15], p<0.05) and affected human interests, such as agriculture and livestock raising. In countries with greater biodiversity, HBCs caused greater socioeconomic impacts than in more developed countries. Our results highlight the importance of understanding and addressing HBCs from multiple perspectives (ecological, sociocultural, and political) to effectively protect both biodiversity and local livelihoods.  相似文献   

8.
Abstract: There is an intense debate about the effects of postfire salvage logging versus nonintervention policies on regeneration of forest communities, but scant information from experimental studies is available. We manipulated a burned forest area on a Mediterranean mountain to experimentally analyze the effect of salvage logging on bird–species abundance, diversity, and assemblage composition. We used a randomized block design with three plots of approximately 25 ha each, established along an elevational gradient in a recently burned area in Sierra Nevada Natural and National Park (southeastern Spain). Three replicates of three treatments differing in postfire burned wood management were established per plot: salvage logging, nonintervention, and an intermediate degree of intervention (felling and lopping most of the trees but leaving all the biomass). Starting 1 year after the fire, we used point sampling to monitor bird abundance in each treatment for 2 consecutive years during the breeding and winter seasons (720 censuses total). Postfire burned‐wood management altered species assemblages. Salvage logged areas had species typical of open‐ and early‐successional habitats. Bird species that inhabit forests were still present in the unsalvaged treatments even though trees were burned, but were almost absent in salvage‐logged areas. Indeed, the main dispersers of mid‐ and late‐successional shrubs and trees, such as thrushes (Turdus spp.) and the European Jay (Garrulus glandarius) were almost restricted to unsalvaged treatments. Salvage logging might thus hamper the natural regeneration of the forest through its impact on assemblages of bird species. Moreover, salvage logging reduced species abundance by 50% and richness by 40%, approximately. The highest diversity at the landscape level (gamma diversity) resulted from a combination of all treatments. Salvage logging may be positive for bird conservation if combined in a mosaic with other, less‐aggressive postfire management, but stand‐wide management with harvest operations has undesirable conservation effects.  相似文献   

9.
Wet grassland populations of wading birds in the United Kingdom have declined severely since 1990. To help mitigate these declines, the Royal Society for the Protection of Birds has restored and managed lowland wet grassland nature reserves to benefit these and other species. However, the impact of these reserves on bird population trends has not been evaluated experimentally due to a lack of control populations. We compared population trends from 1994 to 2018 among 5 bird species of conservation concern that breed on these nature reserves with counterfactual trends created from matched breeding bird survey observations. We compared reserve trends with 3 different counterfactuals based on different scenarios of how reserve populations could have developed in the absence of conservation. Effects of conservation interventions were positive for all 4 targeted wading bird species: Lapwing (Vanellus vanellus), Redshank (Tringa totanus), Curlew (Numenius arquata), and Snipe (Gallinago gallinago). There was no positive effect of conservation interventions on reserves for the passerine, Yellow Wagtail (Motacilla flava). Our approach using monitoring data to produce valid counterfactual controls is a broadly applicable method allowing large-scale evaluation of conservation impact.  相似文献   

10.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

11.
Habitat fragmentation is a primary driver of wildlife loss, and establishment of biological corridors is a common strategy to mitigate this problem. A flagship example is the Mesoamerican Biological Corridor (MBC), which aims to connect protected forest areas between Mexico and Panama to allow dispersal and gene flow of forest organisms. Because forests across Central America have continued to degrade, the functioning of the MBC has been questioned, but reliable estimates of species occurrence were unavailable. Large mammals are suitable indicators of forest functioning, so we assessed their conservation status across the Isthmus of Panama, the narrowest section of the MBC. We used large-scale camera-trap surveys and hierarchical multispecies occupancy models in a Bayesian framework to estimate the occupancy of 9 medium to large mammals and developed an occupancy-weighted connectivity metric to evaluate species-specific functional connectivity. White-lipped peccary (Tayassu pecari), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), white-tailed deer (Odocoileus virginianus), and tapir (Tapirus bairdii) had low expected occupancy along the MBC in Panama. Puma (Puma concolor), red brocket deer (Mazama temama), ocelot (Leopardus pardalis), and collared peccary (Pecari tajacu), which are more adaptable, had higher occupancy, even in areas with low forest cover near infrastructure. However, the majority of species were subject to ≥1 gap that was larger than their known dispersal distances, suggesting poor connectivity along the MBC in Panama. Based on our results, forests in Darien, Donoso–Santa Fe, and La Amistad International Park are critical for survival of large terrestrial mammals in Panama and 2 areas need restoration.  相似文献   

12.
Long-term population declines have elevated recovery of grassland avifauna to among the highest conservation priorities in North America. Because most of the Great Plains is privately owned, recovery of grassland bird populations depends on voluntary conservation with strong partnerships between private landowners and resource professionals. Despite large areas enrolled in voluntary practices through U.S. Department of Agriculture's Lesser Prairie-chicken (Tympanuchus pallidicinctus) Initiative (LPCI), the effectiveness of Farm Bill investments for meeting wildlife conservation goals remains an open question. Our objectives were to evaluate extents to which Conservation Reserve Program (CRP) and LPCI-grazing practices influence population densities of grassland birds; estimate relative contributions of practices to regional bird populations; and evaluate percentages of populations conserved relative to vulnerability of species. We designed a large-scale impact-reference study and used the Integrated Monitoring in Bird Conservation Regions program to evaluate bird population targets of the Playa Lakes Joint Venture. We used point transect distance sampling to estimate density and population size for 35 species of grassland birds on private lands enrolled in native or introduced CRP plantings and LPCI-prescribed grazing. Treatment effects indicated CRP plantings increased densities of three grassland obligates vulnerable to habitat loss, and LPCI grazing increased densities of four species requiring heterogeneity in dense, tall-grass structure (α = 0.1). Population estimates in 2016 indicated the practices conserved breeding habitat for 4.5 million birds (90% CI: 4.0–5.1), and increased population sizes of 16 species , totaling 1.8 million birds (CI: 1.4–2.4). Conservation practices on private land benefited the most vulnerable grassland obligate species (AICc weight = 0.53). By addressing habitat loss and degradation in agricultural landscapes, conservation on private land provides a solution to declining avifauna of North America and scales up to meet population recovery goals for the most imperiled grassland birds.  相似文献   

13.
Abstract: Inventories of tree species are often conducted to guide conservation efforts in tropical forests. Such surveys are time consuming, demanding of expertise, and expensive to perform and interpret. Approaches to make survey efforts simpler or more effective would be valuable. In particular, it would be good to be able to easily identify areas of old‐growth forest. The average density of the wood of a tree species is closely linked to its successional status. We used tree inventory data from eastern Borneo to determine whether wood density can be used to quantify forest disturbance and conservation importance. The average density of wood in a plot was significantly and negatively related to disturbance levels, with plots with higher wood densities occurring almost exclusively in old‐growth forests. Average wood density was unimodally related to the diversity of tree species, indicating that the average wood density in a plot might be a better indicator of old‐growth forest than species diversity. In addition, Borneo endemics had significantly heavier wood than species that are common throughout the Malesian region, and they were more common in plots with higher average wood density. We concluded that wood density at the plot level could be a powerful tool for identifying areas of conservation priority in the tropical rain forests of Southeast Asia.  相似文献   

14.
The protection and sustainable management of habitat trees is an integral part of modern forest nature conservation concepts such as retention forestry. Bats, cavity-nesting birds, arboreal marsupials, and many different saproxylic species depend on habitat trees and their great variety of microhabitats and old-growth characteristics. With a focus on insights from temperate forests, we traced the development of habitat-tree protection over 200 years. The idea was first conceptualized by foresters and natural scientists in the early 19th century. At that time, utilitarian conservation aimed to protect cavity trees that provided roosts and nesting holes for insectivorous bats and birds. By the second half of the 19th century, habitat-tree protection was well known to foresters and was occasionally implemented. Knowledge of the protection of large old trees, a special kind of habitat tree, for sociocultural and aesthetic reasons developed similarly. But, many foresters of that time and in the following decades fundamentally rejected protection of habitat trees for economic reasons. Beginning in the 1970s, forest conservation and integrative forest management became increasingly important issues worldwide. Since then, the protection of habitat trees has been implemented on a large scale. Long-term views on the development of conservation concepts are important to inform the implementation of conservation today. In particular, historical analyses of conservation concepts allow the testing of long-term conservation outcomes and make it possible to study the resilience of conservation approaches to changing social or ecological conditions. We encourage all conservation ecologists to assess the practical and conceptual impact of the initial ideas that led to modern conservation concepts in terms of long-term biodiversity conservation.  相似文献   

15.
Biodiversity declines and ecosystem decay follow forest fragmentation; initially, abundant species may become rare or be extirpated. Underlying mechanisms behind delayed extirpation of certain species following forest fragmentation are unknown. Species declines may be attributed to an inadequate number of breeding adults required to replace the population or decreased juvenile survival rate due to reduced recruitment or increased nest predation pressures. We used 10 years of avian banding data, 5 years before and 4 years after fragment isolation, from the Biological Dynamics of Forest Fragments Project, carried out near Manaus, Brazil, to investigate the breeding activity hypothesis that there is less breeding activity and fewer young after relative to before fragment isolation. We compared the capture rates of active breeding and young birds in 3 forest types (primary forest, fragment before isolation, and fragment after isolation) and the proportion of active breeding and young birds with all birds in each unique fragment type before and after isolation. We grouped all bird species by diet (insectivore or frugivore) and nesting strategy (open cup, cavity, or enclosed) to allow further comparisons among forest types. We found support for the breeding activity hypothesis in insectivorous and frugivorous birds (effect sizes 0.45 and 0.53, respectively) and in birds with open-cup and enclosed nesting strategies (effect sizes 0.56 and 0.44, respectively) such that on average there were more breeding birds in fragments before isolation relative to after isolation. A larger proportion of birds in the community were actively breeding before fragment isolation (72%) than after fragment isolation (11%). Unexpectedly, there was no significant decrease in the number of young birds after fragment isolation, although sample sizes for young were small (n = 43). This may have been due to sustained immigration of young birds to fragments after isolation. Together, our results provide some of the strongest evidence to date that avian breeding activity decreases in response to fragment isolation, which could be a fundamental mechanism contributing to ecosystem decay.  相似文献   

16.
Epiphytes, air plants that are structurally dependent on trees, are a keystone group in tropical forests; they support the food and habitat needs of animals and influence water and nutrient cycles. They reach peak diversity in humid montane forests. Climate predictions for Central American mountains include increased temperatures, altered precipitation seasonality, and increased cloud base heights, all of which may challenge epiphytes. Although remaining montane forests are highly fragmented, many tropical agricultural systems include trees that host epiphytes, allowing epiphyte communities to persist even in landscapes with lower forest connectivity. I used structural equations models to test the relative effects of climate, land use, tree characteristics, and biotic interactions on vascular epiphyte diversity with data from 31 shade coffee farms and 2 protected forests in northern Nicaragua. I also tested substrate preferences of common species with randomization tests. Tree size, tree diversity, and climate all affected epiphyte richness, but the effect of climate was almost entirely mediated by bryophyte cover. Bryophytes showed strong sensitivity to mean annual temperature and insolation. Many ferns and some orchids were positively associated with bryophyte mats, whereas bromeliads tended to establish among lichen or on bare bark. The tight relationships between bryophytes and climate and between bryophytes and vascular epiphytes indicated that relatively small climate changes could result in rapid, cascading losses of montane epiphyte communities. Currently, shade coffee farms can support high bryophyte cover and diverse vascular epiphyte assemblages when larger, older trees are present. Agroforests serve as valuable reservoirs for epiphyte biodiversity and may be important early-warning systems as the climate changes.  相似文献   

17.
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.  相似文献   

18.
19.
Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species—echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)—and 2 non-native, invasive mammal species—fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98 = 5.91, p < 0.001) and composition (F3, 43 = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.  相似文献   

20.
Over the past 1000 years New Zealand has lost 40–50% of its bird species, and over half of these extinctions are attributable to predation by introduced mammals. Populations of many extant forest bird species continue to be depredated by mammals, especially rats, possums, and mustelids. The management history of New Zealand's forests over the past 50 years presents a unique opportunity because a varied program of mammalian predator control has created a replicated management experiment. We conducted a meta-analysis of population-level responses of forest birds to different levels of mammal control recorded across New Zealand. We collected data from 32 uniquely treated sites and 20 extant bird species representing a total of 247 population responses to 3 intensities of invasive mammal control (zero, low, and high). The treatments varied from eradication of invasive mammals via ground-based techniques to periodic suppression of mammals via aerially sown toxin. We modeled population-level responses of birds according to key life history attributes to determine the biological processes that influence species’ responses to management. Large endemic species, such as the Kaka (Nestor meridionalis) and New Zealand Pigeon (Hemiphaga novaeseelandiae), responded positively at the population level to mammal control in 61 of 77 cases for species ≥20 g compared with 31 positive responses from 78 cases for species <20 g. The Fantail (Rhipidura fuliginosa) and Grey Warbler (Gerygone igata), both shallow endemic species, and 4 nonendemic species (Blackbird [Turdus merula], Chaffinch [Fringilla coelebs], Dunnock [Prunella modularis], and Silvereye [Zosterops lateralis]) that arrived in New Zealand in the last 200 years tended to have slight negative or neutral responses to mammal control (59 of 77 cases). Our results suggest that large, deeply endemic forest birds, especially cavity nesters, are most at risk of further decline in the absence of mammal control and, conversely suggest that 6 species apparently tolerate the presence of invasive mammals and may be sensitive to competition from larger endemic birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号