首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Critical care medicine has largely benefited from plastic-containing medical devices. However, bisphenol-A (BPA) and phthalates present in the plastics can leach from such devices. We hypothesized that intensive care unit (ICU) patients are exposed to BPA and phthalates through (plastic) medical devices. Serum (n = 118) and urine (n = 102) samples of adult ICU patients (n = 35) were analyzed for total BPA and phthalate metabolites (PMs). Our results showed that adult ICU patients are continuously exposed to phthalates, such as di(2-ethylhexyl)phthalate (DEHP), as well as to BPA, albeit to a lesser extent. This exposure resulted in detectable high serum and urinary levels in almost every patient and at every studied time point. Moreover, these levels were significantly higher than in controls or compared to referenced literature. The chronology of exposure was demonstrated: pre-operative urinary and serum levels of the DEHP metabolites were often below the detection limit. Plastic-containing medical devices were the main source of DEHP exposure: post-operative patients on hemofiltration, extracorporeal membrane oxygenation or both showed serum levels 100-or 1000-fold higher than the levels in the general population reported in the literature. The serum and some of the urinary levels of the DEHP metabolites are the highest ever reported in humans; some at biologically highly relevant concentrations of ≥ 10–50 μM. Despite the continuously tightening regulations, BPA and DEHP appear to be still present in (some) medical devices. Because patient safety is a concern in the ICU, further research into the (possibly toxic and clinical) effects of these chemicals released from medical devices is imperiously necessary.  相似文献   

2.
A major challenge of non-invasive human biomonitoring using hair is to assess whether it can be used as an indicator of exposure to Flame Retardants, such as Organophosphate Flame Retardants (PFRs), since the contribution of atmospheric deposition (air and/or dust) cannot be neglected. Therefore, the aim of this study was to evaluate the suitability of using human hair more thoroughly by comparison of (i) levels of PFRs in human hair (from 48 mothers and 54 children), with levels measured in dust and air in their respective households; and (ii) levels of selected PFRs in hair with the levels of corresponding PFR metabolites in matching urine samples collected simultaneously. Most PFRs (tri-n-butyl phosphate (TNBP), 2-ethyl-hexyldiphenyl phosphate (EHDPHP), tri-phenyl phosphate (TPHP), tri-iso-butyl phosphate (TIBP), and tris(2-butoxyethyl) phosphate (TBOEP)) were detected in all human hair samples, tris(2-ethylhexyl) phosphate (TEHP) and tris(1,3-dichloro-iso-propyl) phosphate (TDCIPP) in 93%, tri-cresyl-phosphate (TCP) in 69% and tris(2-chloroethyl) phosphate (TCEP) in 21% of the samples. Levels of individual PFRs ranged between < 1 and 3744 ng/g hair and were lower than in indoor dust from the participants' homes. Several statistically significant associations between PFR levels in human hair and PFR levels in house dust and/or air were found, e.g. Spearman correlation (rS = 0.561, p < 0.05) between TBOEP in children's hair and in indoor air. Also, associations were found between TDCIPP in hair and its metabolite bis(1,3-dichloro-iso-propyl) phosphate (BDCIPP) in urine; they were stronger for children (e.g. Pearson correlation rP = 0.475; p = 0.001) than for mothers (rP = 0.395, p = 0.01). Levels of diphenyl phosphate (DPHP) in mothers' and children's urine were slightly correlated (rS = 0.409, p = 0.008), suggesting similar sources of exposure. To the best of our knowledge, this is the first study with such design and our findings might help to understand human exposure to and body burdens of PFRs.  相似文献   

3.
BackgroundBoron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction.ObjectivesTo evaluate potential effects of boron exposure through drinking water on pregnancy outcomes.MethodsIn a mother-child cohort in northern Argentina (n = 194), 1–3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth.ResultsDrinking water boron ranged 377–10,929 μg/L. The serum boron concentrations during pregnancy ranged 0.73–605 μg/L (median 133 μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80 μg/L were inversely associated with birth length (B  0.69 cm, 95% CI − 1.4; − 0.024, p = 0.043, per 100 μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73–447 μg/L). An increase in serum boron of 100 μg/L in the third trimester corresponded to 0.9 cm shorter and 120 g lighter newborns (p = 0.001 and 0.021, respectively).ConclusionsConsidering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations.  相似文献   

4.
Bisphenol A (BPA) and triclosan (TCS) were determined in urine of Belgian overweight and obese (n = 151) and lean (n = 43) individuals. After the first urine collection (0 M), obese patients started a diet program or have undergone bariatric surgery. Hereafter, three additional urine samples from obese patients were collected after 3 (3 M), 6 (6 M) and 12 (12 M) months. Both compounds were detected in > 99% of the samples. BPA had median concentrations of 1.7 and 1.2 ng/mL in obese and lean groups, respectively, while TCS had median concentrations of 1.5 and 0.9 ng/mL in the obese and lean groups, respectively. The obese group had higher urinary concentrations (ng/mL) of BPA (p < 0.5), while no significant differences were found for TCS between the obese and lean groups. No time trends between the different collection moments were observed. The BPA concentrations in the obese group were negatively associated with age, while no gender difference or relationship with body mass index was observed. For TCS, no relationships with gender, BMI, or age were found. The temporal variability of BPA and TCS was assessed with calculation of the intraclass correlation coefficient, Spearman rank correlation coefficients, and surrogate category analysis. We observed evidence that single spot urine samples might be predictive of exposure over a longer period of time. Dietary intakes of BPA and TCS did not differ significantly among the time points considered after obese individuals started losing weight (6 and 12 months). Multiple linear regression analyses after adjusting for age and weight loss revealed negative associations between urinary TCS and serum FT4 in the 0 M and 3 M female obese individuals and positive associations between urinary BPA and serum TSH in the lean group.  相似文献   

5.
BackgroundFew data exist in Latin America concerning the association between organophosphate (OP) urinary metabolites and the consumption of fruits and vegetables and other exposure risk variables in schoolchildren.MethodsWe collected samples of urine from 190 Chilean children aged 6–12 years, fruits and vegetables, water and soil from schools and homes, and sociodemographic data through a questionnaire. We measured urinary dialkylphosphate (DAP) OP metabolites and OP pesticide residues in food consumed by these 190 children during two seasons: December 2010 (summer) and May 2011 (fall). We analyzed the relationship between urinary DAP concentrations and pesticide residues in food, home pesticide use, and residential location.ResultsDiethylalkylphosphates (DEAP) and dimethylalkylphosphates (DMAP) were detected in urine in 76% and 27% of the samples, respectively. Factors associated with urinary DEAP included chlorpyrifos in consumed fruits (p < 0.0001), urinary creatinine (p < 0.0001), rural residence (p = 0.02) and age less than 9 years (p = 0.004). Factors associated with urinary DMAP included the presence of phosmet residues in fruits (p < 0.0001), close proximity to a farm (p = 0.002), home fenitrothion use (p = 0.009), and season (p < 0.0001).ConclusionsUrinary DAP levels in Chilean school children were high compared to previously reported studies. The presence of chlorpyrifos and phosmet residues in fruits was the major factor predicting urinary DAP metabolite concentrations in children.  相似文献   

6.
The worldwide ban of several formulations of brominated flame retardants has caused an increase in the production of organophosphorus flame retardants (PFRs) to meet the existing fire regulations for a wide range of household products. This biomonitoring study surveys the occurrence of the metabolites from PFRs and related plasticizers (dialkyl and diaryl phosphates; DAPs) in urine from a Norwegian mother–child cohort (48 mothers and 54 children). Concentrations of DAPs were higher in the children than in their mothers (Wilcoxon signed-rank test p = 0.001). Median urinary concentrations of diphenyl phosphate (DPHP) were 1.1 and 0.51 ng/mL in children and mothers, respectively, followed by bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) with medians of 0.23 and 0.12 ng/mL, respectively. Detection frequencies for bis(2-butoxyethyl) phosphate (BBOEP) in urine from children and mothers were 32 and 1%, respectively (median < 0.18 ng/mL), and for di-n-butyl phosphate (DNBP) 15 and 8%, respectively (median < 0.12 ng/mL). The concentrations of DPHP and BDCIPP in urine from children were significantly correlated with those found for their parent compounds in air and dust from the households (Spearman's rank correlations 0.30 < Rs < 0.36; p < 0.05). For mothers, only the urinary concentration of BDCIPP was correlated to its precursor in dust from the households (Rs = 0.40; p < 0.01), which might indicate higher impact of the household environment on children than mothers. A diurnal variability study of the mothers' urinary concentrations of DPHP and BDCIPP showed lower concentrations at time periods when women were likely to be outside the household. In contrast, no relevant associations between organophosphate metabolites in urine and food consumption data obtained through a 24 hour recall were seen. This suggests that the residential environment is a more important exposure pathway to PFRs than the diet.  相似文献   

7.
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤ 2.5 or 10 μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2 days before) and chronic (365 days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n = 894) of the children (n = 310) reflected slower Stroop Test (p = 0.05) and Digit-Symbol Test (p = 0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087 s (SE: ± 0.034; p = 0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45 ± 3.47 msec; p = 0.007) and Stroop Tests (59.9 ± 26.5 msec; p = 0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.  相似文献   

8.
Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous in the marine–estuarine environment, but the magnitude of human non-ingestion exposure to these waterborne pathogens is largely unknown. We evaluated the magnitude of dermal exposure to V. vulnificus and V. parahaemolyticus among swimmers recreating in Vibrio-populated waters by conducting swim studies at four swimming locations in the Chesapeake Bay in 2009 and 2011. Volunteers (n = 31) swam for set time periods, and surface water (n = 25) and handwash (n = 250) samples were collected. Samples were analyzed for Vibrio concentrations using quantitative PCR. Linear and logistic regressions were used to evaluate factors associated with recreational exposures. Mean surface water V. vulnificus and V. parahaemolyticus concentrations were 1128 CFU mL 1 (95% confidence interval (CI): 665.6, 1591.4) and 18 CFU mL 1 (95% CI: 9.8, 26.1), respectively, across all sampling locations. Mean Vibrio concentrations in handwash samples (V. vulnificus, 180 CFU cm 2 (95% CI: 136.6, 222.5); V. parahaemolyticus, 3 CFU cm 2 (95% CI: 2.4, 3.7)) were significantly associated with Vibrio concentrations in surface water (V. vulnificus, p < 0.01; V. parahaemolyticus, p < 0.01), but not with salinity or temperature (V. vulnificus, p = 0.52, p = 0.17; V. parahaemolyticus, p = 0.82, p = 0.06). Handwashing reduced V. vulnificus and V. parahaemolyticus on subjects' hands by approximately one log (93.9%, 89.4%, respectively). It can be concluded that when Chesapeake Bay surface waters are characterized by elevated concentrations of Vibrio, swimmers and individuals working in those waters could experience significant dermal exposures to V. vulnificus and V. parahaemolyticus, increasing their risk of infection.  相似文献   

9.
Releases of aqueous film-forming foams (AFFFs) from airport firefighting activities have been identified as important local point sources of per- and polyfluoroalkyl substances (PFASs) in nearby waterways. PFASs can be taken up by fish, and in turn by the humans that consume them. Despite the global extent of AFFF emissions, few studies exist on related impacts on humans. We aimed to investigate the associations between the consumption of fish from AFFF-affected waters and serum PFAS concentrations in humans using a combination of statistical tools, empirical data, and toxicokinetic modeling. Participants of the SAMINOR 2 Clinical Study were the basis for this study sample, which comprised 74 persons. Fifty-nine participants who reported consuming fish from AFFF-affected waters and 15 nonconsumers completed a questionnaire and gave serum samples. Participants were classified based on their consumption of trout and char: high (n = 16), moderate (n = 16), low (n = 27), and nonconsumers (n = 15); and serum samples were tested for the presence of 15 PFASs. Perfluorooctane sulfonic acid (PFOS) was found in all participants, with the highest concentrations detected in the high consumption group (geometric means, 28 ng/mL) compared to the low consumption group and nonconsumers (10 and 11 ng/mL, respectively). In an analysis of variance contrast model, a significant, positive increasing trend was seen for fish consumption and PFOS, perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Toxicokinetic modeling allowed us to predict the median increases in serum concentrations of PFOS, PFHxS, and PFNA among high consumers within a factor of 2.2. The combination of statistical evaluation and toxicokinetic modeling clearly demonstrated a positive relationship between consumption of fish from AFFF-affected waters and serum PFAS concentrations. Further studies on dietary exposure to other PFASs present in AFFF and its consequences on human health are warranted.  相似文献   

10.
ObjectivesTo systematically review available cohort studies and estimate quantitatively the association between occupational exposure to pesticides and Parkinson's disease (PD).MethodsStudies were identified from a MEDLINE search through 30 November 2011 and from the reference lists of identified publications. Relative risk (RR) estimates were extracted from 12 studies published between 1985 and 2011. Meta-rate ratio estimates (mRR) were calculated according to fixed and random-effect meta-analysis models. Meta-analyses were performed on the whole set of data and separate analyses were conducted after stratification for gender, exposure characterisation, PD cases identification, geographic location, reported risk estimator and cohort study design.ResultsA statistically significant increased risk of PD was observed when all studies were combined (mRR = 1.28; 95% confidence interval [CI]: 1.03–1.59) but there was a high heterogeneity and inconsistency among studies. The highest increased risks were observed for studies with the best design, i.e. reporting PD diagnosis confirmed by a neurologist (mRR = 2.56; CI: 1.46–4.48; n = 4), for cohort studies reporting incidence of PD (mRR = 1.95; CI: 1.29–2.97; n = 3) as well as for prospective cohorts (mRR = 1.39; CI: 1.09–1.78; n = 6). A significant increased risk was also seen for banana, sugarcane and pineapple plantation workers (mRR = 2.05; CI: 1.23–3.42; n = 2).ConclusionsThe present study provides some support for the hypothesis that occupational exposure to pesticides increases the risk of PD.  相似文献   

11.
Flame retardants are widely used in polyurethane foam materials including gymnastics safety equipment such as pit cubes and landing mats. We previously reported elevated concentrations of flame retardants in the air and dust of a U.S. gymnastics training facility and elevated PentaBDE in the serum of collegiate gymnasts. Our objective in this pilot study was to compare urinary biomarkers of exposure to other flame retardants and additives of polyurethane foam including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl- 2,3,4,5-tetrabromobenzoate (EH-TBB) in samples collected from 11 collegiate gymnasts before and after a gymnastics practice (n = 53 urine samples total). We identified a 50% increase in the TPHP biomarker (p = 0.03) from before to after practice, a non-significant 22% increase in the TDCIPP biomarker (p = 0.14) and no change for the EH-TBB biomarker. These preliminary results indicate that the gymnastics training environment can be a source of recreational exposure to flame retardants. Such exposures are likely widespread, as we identified flame retardants in 89% of foam samples collected from gyms across the U.S.  相似文献   

12.
Triphenyl phosphate (TPHP) is primarily used as either a flame retardant or plasticizer, and is listed as an ingredient in nail polishes. However, the concentration of TPHP in nail polish and the extent of human exposure following applications have not been previously studied. We measured TPHP in ten different nail polish samples purchased from department stores and pharmacies in 2013–2014. Concentrations up to 1.68% TPHP by weight were detected in eight samples, including two that did not list TPHP as an ingredient. Two cohorts (n = 26 participants) were recruited to assess fingernail painting as a pathway of TPHP exposure. Participants provided urine samples before and after applying one brand of polish containing 0.97% TPHP by weight. Diphenyl phosphate (DPHP), a TPHP metabolite, was then measured in urine samples (n = 411) and found to increase nearly seven-fold 10–14 h after fingernail painting (p < 0.001). To determine relative contributions of inhalation and dermal exposure, ten participants also painted their nails and painted synthetic nails adhered to gloves on two separate occasions, and collected urine for 24 h following applications. Urinary DPHP was significantly diminished when wearing gloves, suggesting that the primary exposure route is dermal. Our results indicate that nail polish may be a significant source of short-term TPHP exposure and a source of chronic exposure for frequent users or those occupationally exposed.  相似文献   

13.
Few population studies have measured urinary levels of pesticides in individuals with vegan, vegetarian, or organic diets. The objectives of this study were to evaluate whether a vegan/vegetarian diet was associated with increased exposure to organophosphate and carbamate pesticides, and to evaluate the impact of organic consumption on pesticide exposure in vegans and vegetarians. In the current pilot study conducted in 2013–2014, we collected spot urine samples and detailed 24 h recall dietary data in 42 adult residents of Amirim, a vegetarian community in Northern Israel. We measured urinary levels of non-specific organophosphate pesticide metabolites (dialkylphosphates, (DAPs)) and specific metabolites of the current-use pesticides chlorpyrifos (3,5,6-trichloro-2-pyridinol (TCPy)), propoxur (-isopropoxyphenol (IPPX)), and carbaryl (1-naphthol). Six DAP metabolites were detected in between 67 and 100% of urine samples, with highest geometric mean concentrations for dimethylphosphate (19.2 μg/g). Creatinine-adjusted median concentrations of total DAPs and of TCPy were significantly higher in Amirim residents compared to the general Jewish population in Israel (0.29 μmol/g compared to 0.16, p < 0.05 for DAPs and 4.32 μg/g compared to 2.34 μg/g, p < 0.05 for TCPy). Within Amirim residents, we observed a positive association between vegetable intake and urinary TCPy levels (rho = 0.47, p < 0.05) and lower median total dimethyl phosphate levels in individuals reporting that > 25% of the produce they consume is organic (0.065 μmol/L compared to 0.22, p < 0.05). Results from this pilot study indicate relatively high levels of urinary organophosphate pesticide metabolite concentrations in residents of a vegetarian community, a positive association between vegetable intake and urinary levels of a chlorpyrifos specific metabolite, and lower levels of total dimethyl phosphate in individuals reporting higher intake of organic produce. Results suggest that consumption of organic produce may offer some protection from increased exposure to organophosphate pesticide residues in vegetarians.  相似文献   

14.
BackgroundIn the risk assessment of PCDDs, PCDFs, and dioxin-like (DL) PCBs, regulatory authorities support the use of the toxic equivalency factor (TEF)-scheme derived from a heterogeneous data set of the relative effect potency (REPs) estimates.ObjectivesWe sought to determine REPs for dioxin-like compounds (DLCs) using expression of cytochrome P450 (CYP) 1A1 and 1B1 mRNA in human peripheral blood mononuclear cells representing two different pathways.MethodsWe used a sex and age adjusted regression-based approach comparing the strength of association between each DLC and the cytochrome P450 (CYP) 1A1 and 1B1 mRNA expression in 320 adults residing in an organochlorine-polluted area of eastern Slovakia.ResultsWe calculated REPs based on CYP1A1 expression for 4 PCDDs, 8 PCDFs, and 1 PCB congener, and based on CYP1B1 expression for 5 PCDFs and 11 PCB congeners. REPs from CYP1A1 correlated with REPs previously derived from thyroid volume (ρ = 0.85; p < 0.001) and serum FT4 (ρ = 0.77; p = 0.009). The 13 log REPs from CYP1A1 correlated with log WHO-TEFs (r = 0.63; p = 0.015) and 11 log PCB REPs with PCB consensus toxicity factors (CTFs) for compounds with WHO-TEFs (r = 0.80; p = 0.003). The complete set of derived 56 log REPs correlated with the log CTFs (r = 0.77; p = 0.001) and log WHO-TEFs (r = 0.81; p < 0.001).ConclusionsREPs calculated from thyroid and cytochrome P450 endpoints realistically reflect human exposure scenarios because they are based on human chronic and low-dose exposures. While the CYP 1A1 seems more suitable for toxicity evaluation of PCDD/Fs, the CYP 1B1 is more apt for PCDFs and PCBs and reflects different pathways.  相似文献   

15.
Pyrethroid insecticides are widely used in agriculture and in homes. Despite the neurotoxicity of these insecticides at high doses, few studies have examined whether lower-level exposures could adversely affect children's neurodevelopment.The PELAGIE cohort included 3421 pregnant women from Brittany, France between 2002 and 2006. When their children reached their sixth birthday, 428 mothers from the cohort were randomly selected, successfully contacted and found eligible. A total of 287 (67%) mothers agreed to participate with their children in the neuropsychological follow-up. Two cognitive domains were assessed by the Wechsler Intelligence Scale for Children: verbal comprehension and working memory. Five pyrethroid and two organophosphate insecticide metabolites were measured in maternal and child first-void urine samples collected between 6 and 19 gestational weeks and at 6 years of age, respectively. Linear regression models were used to estimate associations between cognitive scores and urinary pyrethroid metabolite concentrations, adjusting for organophosphate metabolite concentrations and potential confounders.Maternal prenatal pyrethroid metabolite concentrations were not consistently associated with any children's cognitive scores. By contrast, childhood 3-PBA and cis-DBCA concentrations were both negatively associated with verbal comprehension scores (P-trend = 0.04 and P-trend < 0.01, respectively) and with working memory scores (P-trend = 0.05 and P-trend < 0.01, respectively). No associations were observed for the three other childhood pyrethroid metabolite concentrations (4-F-3-PBA, cis-DCCA, and trans-DCCA).Low-level childhood exposures to deltamethrin (as cis-DBCA is its principal and selective metabolite), in particular, and to pyrethroid insecticides, in general (as reflected in levels of the 3-PBA metabolite) may negatively affect neurocognitive development by 6 years of age. Whatever their etiology, these cognitive deficits may be of importance educationally, because cognitive impairments in children interfere with learning and social development. Potential causes that can be prevented are of paramount public health importance.  相似文献   

16.
Infertility affects about 17% couples, and males contribute to half of the cases. Compared with independent effects of genetic and environmental factors, interactions between them help in the understanding of the susceptibility to male infertility. Thus, we genotyped 25 polymorphisms, measured 16 urinary chemical concentrations and explored interactions between gene-gene and gene-environment in 1039 Han Chinese using metabolomic analysis. We first observed that GSTT1 might interact with GSTM1 (Pinter = 6.33 × 10 8). Furthermore, an interaction between GSTM1 and 4-n-octylphenol (4-n-OP) was identified (Pinter = 7.00 × 10 3), as well as a 2-order interaction among GSTT1, GSTM1 and 4-n-OP (Pinter = 0.04). Subjects with GSTT1-present and GSTM1-null genotypes were susceptible to male infertility when exposed to 4-n-OP (OR = 14.05, 95% CI = 4.78–60.20, P = 2.34 × 10 5). Most metabolites identified were involved in the tricarboxylic acid cycle. In conclusion, it is a novel study of the interaction on male infertility from the aspect of metabolomics.  相似文献   

17.
BackgroundAlthough metals can adversely impact children's health, the distribution of exposures to many metals, particularly among vulnerable subpopulations, is not well characterized.ObjectivesWe sought to determine whether neighborhood deprivation was associated with urinary concentrations of thirteen metals and whether observed relationships varied by race/ethnicity.MethodsWe obtained neighborhood characteristics from the 2005–2009 American Community Survey. Demographic information and urine samples from 400 healthy young girls in Northern California were obtained during a clinical visit. Urine samples were analyzed for metals using inductively-coupled plasma-mass spectrometry and levels were corrected for creatinine. We ran analysis of variance and generalized linear regression models to estimate associations of urinary metal concentrations with neighborhood deprivation and race/ethnicity and stratified multivariable models to evaluate possible interactions among predictors on metals concentrations.ResultsUrinary concentrations of three metals (barium, lead, antimony) varied significantly across neighborhood deprivation quartiles, and four (barium, lead, antimony, tin) varied across race/ethnicity groups. In models adjusted for family income and cotinine, both race/ethnicity (F3,224 = 4.34, p = 0.01) and neighborhood deprivation (F3,224 = 4.32, p = 0.01) were associated with antimony concentrations, but neither were associated with lead, barium, or tin, concentrations. Examining neighborhood deprivation within race/ethnicity groups, barium levels (pinteraction < 0.01) decreased with neighborhood deprivation among Hispanic girls (ptrend < 0.001) and lead levels (pinteraction = 0.06) increased with neighborhood deprivation among Asian girls (ptrend = 0.04).ConclusionsOur results indicate that children's vulnerability to some metals varies by neighborhood deprivation quartile and race/ethnicity. These differential distributions of exposures may contribute to environmental health disparities later in life.  相似文献   

18.
1-Nitro-pyrene has been considered a compound specific to diesel combustion emission, while 1- and 2-nitro-napthalene are mainly produced through photochemical conversion of naphthalene released to the atmosphere. Metabolites of these compounds may serve as biomarkers of exposure to traffic related pollutants. We collected urine samples from 111 healthy and non-smoking subjects within (i.e., during the Beijing Olympics) and outside (i.e., before and after the Olympics) a traffic control regime to improve Beijing's air quality. Urines were analyzed for the sum of 1&2-amino-naphthalene (metabolites of 1- and 2-nitro-naphthalene) and 1-amino-pyrene (a metabolite of 1-nitro-pyrene), using an HPLC-fluorescence method. Within the same time periods, PM2.5 mass and constituents were measured, including elemental carbon, sulfate, nitrate, PAHs, carbon monoxide, nitrogen dioxide, sulfur dioxide, ozone, and particle number concentrations. The associations between the urinary metabolites and air pollutants were analyzed using linear mixed-effects models. From the pre- to during-Olympic period, 1&2-amino-naphthalene and 1-hydroxy-pyrene decreased by 23% (p = 0.066) and 16% (p = 0.049), respectively, while there was no change in 1-amino-pyrene (2% increase, p = 0.892). From during- to post-Olympic period, 1&2-amino-naphthalene, 1-amino-pyrene and 1-hydroxy-pyrene concentrations increased by 26% (p = 0.441), 37% (p = 0.355), and 3% (p = 0.868), respectively. Furthermore, 1&2-amino-naphthalene and 1-hydroxy-pyrene were associated with traffic related pollutants in a similar lag pattern. 1-amino-pyrene was associated more strongly with diesel combustion products (e.g. PN and elemental carbon) and not affected by season. Time-lag analyses indicate strongest/largest associations occurred 24–72 h following exposure. 1&2-amino-naphthalene and 1-hydroxy-pyrene can be used as a biomarker of exposure to general vehicle-emitted pollutants. More data are needed to confirm 1-amino-pyrene as a biomarker of exposure to diesel combustion emissions. Controlling creatinine as an independent variable in the models will provide a moderate adjusting effect on the biomarker analysis.  相似文献   

19.
There is evidence of endocrine disruption and reproductive effects in animals following exposure to certain PBDEs, but human studies are limited. The goal of this study was to investigate the use of serum and follicular fluid as biomarkers of exposure to PBDEs and to explore whether a relationship between PBDE exposure and early pregnancy loss exists. We measured 8 PBDE congeners in archived serum and ovarian follicular fluid samples from 65 women undergoing in-vitro fertilization (IVF). Logistic regression models were used to predict the odds of failed embryo implantation associated with higher levels of PBDEs among the women in the study. There were moderate Kendall's Tau-beta correlations between serum and follicular fluid concentrations of BDE 28, 47, 100 and 154 (Tβ = 0.29–0.38, all p-values < 0.005), but BDE 99 and 153 were not correlated between the two matrices (Tβ < 0.2, p-values > 0.05). Women with detectable concentrations of BDE 153 (39% had detectable levels) in follicular fluid had elevated odds of failed implantation compared with women who had non-detectable concentrations (adjusted OR = 10.0; 95%CI: 1.9 to 52; p = 0.006; adjusted by age and body mass index). These findings suggest that exposure to BDE 153 may be associated with failed embryo implantation. Due to our observation of only moderate correlations between matrices, serum PBDE concentrations may not be a good indicator of follicular fluid concentrations when studying early pregnancy endpoints in women undergoing IVF.  相似文献   

20.
Although pesticide use is widespread in China, little is known about levels of exposure to organophosphate pesticides in the population and its potential adverse health effects. We investigated levels of organophosphate exposure in pregnant women and the association between organophosphate exposure and perinatal outcomes in Shanghai, China, by enrolling 187 healthy pregnant women between September 2006 and January 2007. Pesticide exposure was assessed by a questionnaire administered to the mothers in the hospital after delivery as well as by analyses of maternal urinary nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates). Information on birth weight and length was collected from medical records. Geometric means of metabolites were 25.75 μg/L for dimethylphosphate (DMP); 11.99 μg/L for dimethylthiophosphate (DMTP); 9.03 μg/L for diethylphosphate (DEP); and 9.45 μg/L for diethyldithiophosphate (DETP). We found that a log unit increase in urinary DEP was associated with a decrease in gestational duration in girls by 1.79 weeks. [ßadjusted =  1.79 weeks per log10 unit increase; 95% confidence interval (CI), −2.82 to − 0.76; p = 0.001]. These data suggest that high pesticide level might adversely affect duration of gestation although this association was not present among boys. No associations for any of the organophosphate exposure measures were present for birth weight and length, suggesting that organophosphate pesticides may have no effects on fetal growth. Given that maternal urine pesticide levels in Shanghai were much higher than those reported in developed countries, more studies on the effects of in utero organophosphate exposure on fetal growth and child neurodevelopment are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号