首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In social insects, conflicts over male parentage can be resolved by worker policing. However, the evolution of policing behavior is constrained by the ability of individuals to identify reproductive nestmates, or their eggs. We investigated the occurrence of worker policing and its underlying chemical communication in the bulldog ant Myrmecia gulosa. Although workers have functional ovaries and can lay male-destined eggs, they do not reproduce in queenright colonies. To determine if their sterility is a consequence of worker policing, we experimentally induced worker reproduction in the presence of a queen. Some individuals were seized and immobilized by nestmates, and sometimes killed as a consequence. Although the ovarian development of immobilized individuals was variable, their cuticular hydrocarbon profiles were intermediate between reproductive and nonreproductive workers, indicating they were in the process of starting to reproduce. Approximately 29% of these incipient reproductive workers were successfully policed. To test for policing on eggs, we transferred viable worker eggs to queenright colonies and monitored their acceptance. Furthermore, we compared the surface hydrocarbons of the different types of eggs to determine whether these chemicals could be involved in egg recognition. We found that although there were differences in hydrocarbon profiles and discrimination between queen and worker-laid eggs, viable eggs were not destroyed. Our results strongly support the idea that cuticular hydrocarbons are involved in the policing of reproductive workers. A low level of worker policing appears sufficient to select for self-restraint in workers when few fitness benefits are gained by selfish reproduction. Policing of eggs may thus be unnecessary.  相似文献   

2.
Nestmate recognition is a ubiquitous phenomenon in social insects as a means to prevent entry of undesired individuals aiming at exploiting the rich nest resources. The recognition cues in ants were shown in a few cases to be cuticular hydrocarbons, although there are a quite number of correlated associations. In the present study we modified the cuticular profiles of workers Camponotus fellah hydrocarbons with cuticular washes from a closely related, yet undescribed species, Camponotus sp. Although these sympatric species are morphologically indistinguishable, cuticular washes of C. sp. contain 9,13-dimethylpentacosane and 11,15-dimethylheptacosane that are either absent or occur as traces in C. fellah. In addition, C. sp. contains significantly greater amounts of 3-methylpentacosane than C. fellah workers. The cuticle modification was done solventless in a manner that minimized disruption to the cuticular structure of the ant being modified. Judging from the 3 focal compounds, such treatment added between 20 and 30% of the original amounts present in C. sp. to the treated C. fellah workers. This addition changed consistently the cuticular hydrocarbon profile of the treated ant. Dyadic assays between C. fellah and their nestmates treated with C. sp. cuticular rinses revealed a significantly higher level of aggression compared to non-treated nestmates. There was no aggression between nestmates of C. sp. These results demonstrate that in heterospecific interactions between the two Camponotus species there is a correlation between cuticular hydrocarbons and a nestmate recognition response, albeit not as high as the response of C. fellah to of C. sp. workers. This is consistent with the hypothesis that cuticular hydrocarbons may play a role in nestmate recognition.  相似文献   

3.
Workers in de-queened colonies of the neotropical ant, Pachycondyla cf. inversa, form linear or near-linear dominance hierarchies by violent antennation and biting. In these rank orders, social status and ovarian activity are on average highly correlated. Whereas the presence of a fertile queen appears to be sufficient to prevent workers from laying eggs, fertile workers do not completely control reproduction by their nestmates, suggesting that workers are able to differentiate between an egg-laying queen and an egg-laying worker. Here we show that the composition of cuticular hydrocarbons of egg-laying workers is quantitatively and qualitatively different from that of non-laying workers and resembles the hydrocarbon blend of the queen but does not completely match it. Furthermore, using discriminant analysis, it was possible to distinguish workers with four different classes of ovarian development based only on their cuticular hydrocarbon profiles. Fertility-associated changes in cuticular hydrocarbons may play an important role in the behavioural regulation of reproduction in this ant.  相似文献   

4.
Volny VP  Greene MJ  Gordon DM 《Ecology》2006,87(9):2194-2200
In contrast to the system of caste determination in most social insects, reproductive caste determination in some populations of Pogonomyrmex barbatus has a genetic basis. Populations that exhibit genetic caste determination are segregated into two distinct, genetic lineages. Same-lineage matings result in female reproductives, while inter-lineage matings result in workers. To investigate whether founding P. barbatus queens lay eggs of reproductive genotype, and to determine the fate of those eggs, we genotyped eggs, larvae, and pupae produced by naturally inseminated, laboratory-raised queens. We show that founding dependent lineage queens do lay eggs of reproductive genotype, and that the proportion of reproductive genotypes decreases over the course of development from eggs to larvae to pupae. Because queens must mate with a male of each lineage to produce both workers and female reproductives, it would benefit queens to be able to distinguish males of the two lineages. Here we show that P. barbatus males from the two genetic lineages differ in their cuticular hydrocarbon profiles. Queens could use male cuticular hydrocarbons as cues to assess the lineage of males at the mating aggregation, and possibly keep mating until they have mated with males of both lineages.  相似文献   

5.
In ant societies, workers do not usually reproduce but gain indirect fitness benefits from raising related offspring produced by the queen. One of the preconditions of this worker self-restraint is sufficient fertility of the queen. The queen is, therefore, expected to signal her fertility. In Camponotus floridanus, workers can recognize the presence of a highly fertile queen via her eggs, which are marked with the queen's specific hydrocarbon profile. If information on fertility is encoded in the hydrocarbon profile of eggs, we expect workers to be able to differentiate between eggs from highly and weakly fertile queens. We found that workers discriminate between these eggs solely on the basis of their hydrocarbon profiles which differ both qualitatively and quantitatively. This pattern is further supported by the similarity of the egg profiles of workers and weakly fertile queens and the similar treatment of both kinds of eggs. Profiles of queen eggs correspond to the cuticular hydrocarbon profiles of the respective queens. Changes in the cuticular profiles are associated with the size of the colony the queen originates from and her current egg-laying rate. However, partial correlation analysis indicates that only colony size predicts the cuticular profile. Colony size is a buffered indicator of queen fertility as it is a consequence of queen productivity within a certain period of time, whereas daily egg-laying rate varies due to cyclical oviposition. We conclude that surface hydrocarbons of eggs and the cuticular profiles of queens both signal queen fertility, suggesting a major role of fertility signals in the regulation of reproduction in social insects.  相似文献   

6.
Establishment and maintenance of the reproductive division of labor within social insect colonies relies on clear communication between nestmates. Fertile members convey their status to prevent others from becoming reproductively active. Recent findings in some basal termites indicate that cuticular hydrocarbon profiles may indicate reproductive state, but there is little evidence to show a direct link between reproductive status and hydrocarbon production—a prerequisite for an “honest” fertility signal. Here, we report that the putative signaling mechanism is influenced by juvenile hormone (JH), a primary regulator of gonadal development and activity in insects. Topical application of a JH-analog (pyriproxyfen) to reproductively inactive alates of the basal dampwood termite Zootermopsis nevadensis induced both females and males to express significantly more of a reproductive-specific hydrocarbon (6,9,17-tritriacontatriene). However, the JH-analog did not significantly enhance gonadal development or activity in treated termites beyond what is usually observed in maturing alates released from the inhibitory stimuli of their natal nest. These results suggest that a rise in JH following disinhibition drives the expression of reproductive-specific hydrocarbons, but that an individual’s hydrocarbon profile is not directly linked to its gonadal state. Rather than directly driving the expression of reproductive-specific hydrocarbons, the gonads may act indirectly through their influence on circulating JH.  相似文献   

7.
Cuticular hydrocarbons have been identified as the source of sex-recognition signals for many insects, but for social insects, specifically ants, cuticular hydrocarbon profiles of males are often ignored. This study reports male-specific cuticular hydrocarbon patterns for the trap-jaw ant Odontomachus brunneus. Analysis of samples from four Florida populations demonstrated that male-specific overabundance of four hydrocarbons is conserved across populations despite population-level divergence of the remainder of the profile. In addition, hydrocarbon patterns unique to adult males were not present on the cuticle of final instar male larvae, indicating that male-specific profiles arise late in development. The pattern of an abundant subset of conserved cuticular hydrocarbons characteristic of males across divergent populations was compared to earlier findings of the conservation of fertility signals of females across these same populations.  相似文献   

8.
Summary. Trail-following behavior of Lasius japonicus was colony-specific in the field, while trail pheromone activity was not. We found that the footprint substance caused colony-specific trail-following behavior only when working in conjunction with the trail pheromone. The footprint substance alone did not lead the workers to follow trails. The substance consisted mainly of hydrocarbons with composition almost identical to that of cuticular hydrocarbons, except for the absence of n-alkanes. Nestmate workers shared footprint hydrocarbon profiles as well as cuticular hydrocarbons, but the profiles differed among colonies. We therefore consider that the footprint hydrocarbon profiles serve as the trail discrimination signal in L. japonicus.  相似文献   

9.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

10.
Summary. Individuals in an insect colony need to identify one another according to caste. Nothing is known about the sensory process allowing nestmates to discriminate minute variations in the cuticular hydrocarbon mixture. The purpose of this study was to attempt to model caste odors discrimination in four species of Reticulitermes termites for the first time by a non-linear mathematical approach using an "artificial neural network" (ANN). Several rounds of testing were carried out using 1 – the whole hydrocarbon mixtures 2 – mixtures containing the hydrocarbons selected by principal component analysis (PCA) as the most implicated in caste discrimination. Discrimination between worker and soldier castes was tested in all four species. For two species we tested discrimination of four castes (workers, soldiers, nymphs, neotenics). To test cuticular pattern similarity in two sibling species (R. santonensis and R. flavipes), we performed two experiments using one species for training and the other for query. Using whole hydrocarbons mixtures, worker/soldier discrimination was always successful in all species. Network performance decreased with the number of hydrocarbons used as inputs. Four-caste discrimination was less successful. In the experiment with the sibling species, the ANN was able to distinguish soldiers but not workers. The results of this study suggest that non-linear mathematical analysis is a good tool for classification of castes based on cuticular hydrocarbon mixture. In addition this study confirms that hydrocarbon mixtures observed are real chemical entities and constitute a true chemical signature or odor. Whole mixtures are not always necessary for discrimination. Received 23 July 1998; accepted 9 October 1998.  相似文献   

11.
In the polydomous ant species Cataglyphis iberica, nests belonging to the same colony are completely separated during hibernation. In order to examine whether this separation induces changes both in the hydrocarbon profile and in recognition ability between adult nestmates, we separated groups of workers for several months under two different conditions: at hibernation temperature and at room temperature. At room temperature, recognition remained unchanged but separation led to longer mutual antennations relative to non-separated controls. When half of a colony was placed under hibernation conditions, antennal interactions also increased in duration and a few aggressive interactions emerged between separated ants. This aggressiveness never reached the intercolonial level observed in this species. In both cases, the hydrocarbon profiles showed differences between individuals after separation while remaining homogeneous within each nest. This chemical modification may induce the longer antennations observed. After separated groups were reunited, individuals recovered their previous antennation pattern and a convergence in hydrocarbon profiles was again observed. These concurrent observations suggest that hydrocarbons are transferred between nestmates. In C. iberica, the formation of the colonial odor seems to follow the “Gestalt” model which allows all satellite nests of a colony to have a common colonial odor. In the field, temporary nest isolation during hibernation may induce divergence between satellites. The role of adult transport in connecting nests during the active season to obtain an efficient Gestalt odor is discussed. Received: 16 June 1997 / Accepted after revision: 25 October 1997  相似文献   

12.
This study compares two basic models for the origin and maintenance of colony gestalt odor in the polygynous ant species Cataglyphis niger. In the first model, queens are centers of de novo biosynthesis and distribution of recognition odors (“queen-centered” model); in the second, colony odors are primarily synthesized and distributed by workers (“worker-centered” model). We tested the behavioral patterns that are predicted from each model, and verified by biochemical means the distributional directionality of these signals. Encounters between nestmates originating from split colonies were as amicable as between nestmates from non-split colonies; queenless ants were as aggressive as their queenright nestmates, and both were equally aggressed by alien ants. These results indicate that queens have little impact on the recognition system of this species, and lend credence to the worker-centered model. The queen-centered model predicts that unique queen substances should be produced in appreciable quantities and that, in this respect, queens should be more metabolically active than workers. Analysis of the chemical composition of postpharyngeal glands (PPGs) or cuticular extracts of queens and workers revealed high similarity. Quantitatively, queens possessed significantly greater amounts of hydrocarbons in the PPG than workers, but the amount on the thoracic epicuticle was the same. Queens, however, possess a lower hydrocarbon biosynthesis capability than workers. The biochemical evidence thus refutes the queen-centered model and supports a worker-centered model. To elucidate the directionality of cue distribution, we investigated exchange of hydrocarbons between the castes in dyadic or group encounters in which selective participants were prelabeled. Queens tended to receive more and give less PPG content, whereas transfer to the epicuticle was low and similar in all encounters, as predicted from the worker-centered hypothesis. In the group encounters, workers transferred, in most cases, more hydrocarbons to the queen than to a worker. This slight preference for the queen is presumably amplified in a whole colony and can explain their copious PPG content. We hypothesize that preferential transfer to the queen may reflect selection to maintain her individual odor as close to the average colony odor as possible. Received: 4 November 1997 / Accepted after revision: 5 February 1998  相似文献   

13.
The genetic organization of colonies of the subterranean termite Reticulitermes flavipes in two subpopulations in Massachusetts was explored using five polymorphic allozymes and double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region. Empirically obtained estimates of worker relatedness and F-statistics were compared with values generated by computer simulations of breeding schemes to make inferences about colony organization. In one study site (G), worker genotypes indicated the presence of a mixture of colonies headed by monogamous outbred primary reproductives and colonies headed by inbreeding neotenic reproductives, both colony types having limited spatial ranges. A second site (S) was dominated by several large colonies with low relatedness among nestmates. Mixed DSCP haplotypes in three colonies indicated that nestmates had descended from two or three unrelated female reproductives. Computer simulations of breeding schemes suggested that positive colony inbreeding coefficients at site S resulted from either commingling of workers from different nests or different colonies. Such an exchange of workers between nests corresponds to the multiple-site nesting lifetype of many subterranean termites and resembles colony structure in polycalic Formica ants. Our study demonstrates considerable variation in R. flavipes colony structure over a small spatial scale, including colonies headed by monogamous outbred primary reproductives, colonies containing multiple inbred neotenic reproductives and large polydomous colonies containing the progeny of two or more unrelated queens, and suggests that the number of reproductives and nestmate relatedness change with colony age and size.  相似文献   

14.
Summary. Breeding burrows of Parastizopus armaticeps armaticeps, a fossorial desert tenebrionid beetle, are cleptoparasitised by the closely related Eremostibes opacus. Gas chromatographic analyses show a high congruity of the cuticular hydrocarbons of both species. We compare these hydrocarbon patterns with those of four other Stizopina species and the Scaurini Herpiscius sommeri. In a bioassay, dummies treated with cuticular hydrocarbon extracts of E. opacus and the P. a. bifidus parasite E. bushmanicus were mostly ignored by P. a. armaticeps, whereas dummies with applied extracts of the remaining species were heavily attacked. We show that there is a correlation between agonistic behaviour of P. a. armaticeps towards the intruder and the chemical similarity of the cuticular hydrocarbons of the two species. Furthermore, we produced quantitatively modified hydrocarbon patterns of E. barbatus by changing the temperature at which this species was kept. The new 30 °C type was chemically similar to E. opacus, and was frequently ignored by P. a. armaticeps, whereas a reduction of the temperature to 20 °C only had minor effects on the hydrocarbon pattern. Furthermore, we show that the addition of one single component, heptacosane, to the cuticular hydrocarbon extract of E. opacus alters the host’s reaction. We discuss the role of cuticular hydrocarbons for the recognition of this host-parasite system and the relevance of quantitative characters in the hydrocarbon pattern for the discrimination of the host.  相似文献   

15.
Summary. An aphidiid wasp, Paralipsis eikoae, was associated with both Lasius niger and L. sakagamii attending the wormwood root aphid Sappaphis piri. An L. sakagamii worker was observed carrying a winged female P. eikoae to its nest with its mandible, but it did not kill the wasp. Once accepted by the ants, the wasp often mounted and rubbed against the worker ants and sometimes teased them to regurgitate food to itself. No workers in the colony attacked the wasp. Conspecific foreign workers, however, viciously attacked the wasp when encountered. Gas chromatography-mass spectrometry analyses showed that the accepted wasp had complex cuticular hydrocarbons that were very similar to those of its host ants, whereas the winged wasps collected outside the ant nest showed only a series of n-alkanes. Additionally, the accepted wasp had a hydrocarbon profile closer to that of its host ants than to the conspecific foreign ants. We believe the wasp mimics ant cuticular hydrocarbons to integrate into the ant nest, acquiring the hydrocarbons by mounting and rubbing against the ants. In contrast, the cuticular hydrocarbons of the emerged wasp contained larval and pupal hydrocarbons of L. sakagamii that were also similar to those of L. niger. Both ant species rejected adult workers of the other species but accepted their larvae and pupae. We suggest that the emerged P. eikoae mimics the cuticular hydrocarbons of these Lasius larvae and pupae, which allows P. eikoae to be accepted by both L. sakagamii and L. niger. Received 11 March 1998; accepted 22 July 1998.  相似文献   

16.
Colonies of the slave-making ant, Harpagoxenus sublaevis, may simultaneously contain workers of several Leptothorax slave species. We observed aggressive interactions among slave-makers, between slavemakers and slaves, and among slaves in 11 mixed colonies. The first two types of aggression appear to be correlated with reproductive competition for the production of males. Aggressive interactions among slaves, however, occurred mainly between slaves belonging to different species. In two colonies, in which one slave species clearly outnumbered the other, the majority attacked and finally expelled all nestmates belonging to the minority species. Our observations thus suggest that in Harpagoxenus colonies a homogeneous colony odor is not always achieved and that heterospecific slaves may occasionally be mistaken for alien ants. Gas chromatographic analyses of ants from mixed colonies similarly show that cuticular hydrocarbon profiles may differ strongly between heterospecific nestmate slaves.  相似文献   

17.
Most species of social insect are characterized by a reproductive division of labor among morphologically specialized individuals. In contrast, there exist many species where all individuals are morphologically identical and dominance relationships determine which individuals mate and/or reproduce. In newly founded multiple-foundress associations of the social wasp Polistes dominulus, foundresses establish dominance hierarchies where the top-ranked (alpha) female monopolizes egg laying. The possibility that chemical cues are used for recognition of egg-laying individuals has not been explored in this wasp. Using non-destructive techniques, we examined the relationship between ovarian activity and the proportions of cuticular hydrocarbons of three female types (dominant and subordinate foundresses and workers) in 11 colonies. Immediately after nest foundation, no differences were found between alpha and subordinate females. In contrast, at worker emergence, alpha females were statistically distinguishable from both subordinates and workers. We experimentally removed the alpha female in 5 of the original nests and reanalyzed hydrocarbon proportions of the new dominant individual. Replacement individuals were all found to acquire a cuticular signature characteristic of the alpha female. This suggests that cuticular hydrocarbons are used as cues of ovarian activity in P. dominulus, and we discuss our results in terms of a switch from behavioral dominance to chemical signaling in this wasp.  相似文献   

18.
Founding queens of the obligatory social parasite ant Polyergus samurai usurp the host ant Formica japonica colony. The aggressive behaviors of F. japonica workers on the parasite queen disappear after the parasite queen kills the resident queen. To determine whether the parasite queen chemically mimics the host ants, we examined the aggressive behavior of F. japonica workers toward glass dummies applied with various extracts of the parasite queen and host workers. The crude extracts and hydrocarbon fraction reproduced the host workers’ behavior to the live ants. The extracts of the post-adoption parasite queen, as well as the nestmate extracts of F. japonica, did not elicit the aggressive behavior, but the extract of the pre-adoption parasite queen triggered attacks by the host workers. The nestmate recognition of host workers did not change, regardless of contact with the parasite. The gas chromatography and gas chromatography–mass spectrometry analyses indicated that the cuticular hydrocarbon (CHC) profile of the parasite queen drastically changed during the process of usurpation. Discriminant analysis showed the successfully usurped P. samurai queen had colony-specific CHC profiles. CHC profiles of the P. samurai queen who killed the host queen were more similar to those of the host queen than the workers, while the P. samurai queen who usurped the queenless colony had a profile similar to those of host workers. These results suggest that the P. samurai queen usually acquires the CHCs from the host queen during the fight, but from host wokers in queenless host colonies.  相似文献   

19.
In social insect societies, division of labor, i.e., workers of a colony specializing in different tasks, is thought to improve colony performance. Workers of social parasitic slave-making ants focus on a single task, searching for and raiding host colonies to replenish their slave workforce. However, in the North American slavemaker Protomognathus americanus, some workers do not partake in raids but remain inside the colony. We analyzed raid participation, fertility, and cuticular hydrocarbon profiles of slavemaker workers and slaves to understand these behavioral differences and the regulation of division of labor in slavemaker colonies. Raid observations showed that some workers were repeatedly involved in raiding activities (exterior workers), whereas others stayed inside the nest (interior workers). Exterior workers were always infertile, while half of the interior workers were fertile. Analysis of cuticular hydrocarbons demonstrated differences between the groups. We also detected chemical differences between interior and exterior slaves, indicating an influence of the individuals’ tasks on their cuticular profiles. Task- and fertility-related profiles may allow selective nestmate recruiting. Division of labor should also adapt to varying conditions. Since slave raids are dangerous, they should only be initiated when the colony needs additional slaves. Exclusively fed by their slaves, slavemaker workers could determine this need via their nutritional status. In an experiment with various feeding regimes, colonies subjected to a lower food provisioning rate showed increased proportions of slavemaker workers searching for host colonies. Division of labor in slave-making ants, therefore, might be flexible and can change depending on the colonies’ needs.  相似文献   

20.
Chemical communication is crucial for the organization of social insect colonies. However, with the heavy use of one communication modality, problems may arise such as the interference of different types of information. This study investigated how information about fertility and colony membership is integrated in the ant Camponotus floridanus. We introduced into mature, queenright colonies (a) the nestmate queen, (b) a nestmate worker, (c) a foreign, high-fertility queen, (d) a foreign, low-fertility queen, and (e) a foreign worker. As expected, workers did not attack their nestmate queen or a nestmate worker but responded aggressively to foreign workers and foreign, low-fertility queens. Surprisingly, workers did not attack foreign, high-fertility queens. Chemical analysis demonstrated that the cuticular hydrocarbon profile of C. floridanus encodes information about fertility status in queens and workers and colony membership in workers. We suggest that ants respond to this information in the cuticular hydrocarbon profile: individuals with strong fertility signals are accepted regardless of their colony membership, but individuals without strong fertility signals are tolerated only if their cuticular hydrocarbon profile matches that of colony members. Learning how social insects respond to multiple types of information presented together is critical to our understanding of the recognition systems that permit the complex organization of social insect colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号