首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N 2-ethyl-N 4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L?1). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R 2 ≥ 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06–0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

2.
The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L(-1)). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R2 >or= 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06-0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

3.
The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment.  相似文献   

4.
Abstract

The region of Ribeirão Preto City, located in Southeast of Brazil, São Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 μg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 μg/L, which is above the allowable 0.1 μg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, “Chemical Movement in Layered Soil,” as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

5.

The acute toxicity test is described in this experiment where the Collembola species Proisotoma minuta was exposed to herbicides in an artificial sea salt solution for seven days. The salt solution did not prohibit the insects' reproduction system. The seven day LD50 values for trifluralin, pendimethalin, metolachlor, prometryn, paraquat, atrazine, fluometuron, and diuron were 3.48, 10.4, 12.4, 13.0, 23.1, 33.4, 250, and 711 mg L?1, respectively. A good correlation between toxicity of the compounds and their lipophilicity and vapor pressure was recorded in this study.  相似文献   

6.
The region of Ribeir?o Preto City, located in Southeast of Brazil, S?o Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 microg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 microg/L, which is above the allowable 0.1 microg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, "Chemical Movement in Layered Soil," as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

7.
The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20–30 % for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L?1 for diuron and atrazine and 50 mg L?1 for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25–36 % degradation of the nitrochlorinated herbicides and 53–77 % of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.  相似文献   

8.
Hyne RV  Aistrope M 《Chemosphere》2008,71(4):611-620
A passive sampler device selective for hydrophilic analytes was constructed from cellulose membrane (40microm thickness) pre-stained with ruthenium red for 96-168h to impede degradation of the cellulose. The sampling device consisted of pre-stained cellulose membrane tubing containing a binary mixture of the solvents 1-dodecanol and 2,2,4-trimethylpentane as the sequestering medium. A laboratory flow-through system was used to investigate the rates of uptake of herbicides into the solvent mixture of the device and their release. The target herbicides were diuron, atrazine, metolachlor and molinate. Uptake of the herbicides into the solvent mixture of the cellulose membrane device was linear for up to 22 days, and daily sampling rates were determined. Release half-lives from the solvent mixture of the sampling device varied from 14 days for diuron, 15 days for atrazine, 84 days for metolachlor and 28 days for molinate. A field study was undertaken to determine if herbicide concentrations in agricultural drainage water derived from the passive sampler devices deployed for periods from 7 to 22 days, using the laboratory-derived sampling rates, would compare closely with time-weighted average herbicide concentrations determined from extractions of daily composite water samples. The concentrations of diuron, atrazine, metolachlor and molinate determined using the cellulose membrane devices were within twofold of the cumulated mean of the daily drainage water extractions.  相似文献   

9.
A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 micro g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

10.

A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography–diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 μ g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

11.
The acute toxicity test is described in this experiment where the Collembola species Proisotoma minuta was exposed to herbicides in an artificial sea salt solution for seven days. The salt solution did not prohibit the insects' reproduction system. The seven day LD50 values for trifluralin, pendimethalin, metolachlor, prometryn, paraquat, atrazine, fluometuron, and diuron were 3.48, 10.4, 12.4, 13.0, 23.1, 33.4, 250, and 711 mg L(-1), respectively. A good correlation between toxicity of the compounds and their lipophilicity and vapor pressure was recorded in this study.  相似文献   

12.
Tran AT  Hyne RV  Doble P 《Chemosphere》2007,67(5):944-953
The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.  相似文献   

13.
Mixture of metals and herbicides in rivers may pose relevant risks for the health of surrounding communities. Humans may be exposed to river pollution through intake of contaminated water and fish, as well as irrigated agricultural products. The aim of this study was to assess the human health risks of environmental exposure to metals and herbicides through water and fish intake in the Pardo River. Metals (Al, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V, and Zn) were analyzed in river water and in edible fish. Herbicides (ametryn, atrazine, diuron, hexazinone, simazine, and tebuthiuron) were analyzed in river water. Seasonal variances were also studied. Aluminum, Cd, Cu, Mn, Pb, and Zn levels in river water were higher than the USEPA benchmarks. Non-carcinogenic risks due to pollutants mixture exposure were above the limit, and carcinogenic risks of As exposure were >10?6 in the sampling points during the rainy season. Metal levels in fish were lower than the Brazilian legislation and do not pose a threat to public health. Herbicides were detected in four sampling points, with atrazine concentrations (range 0.16–0.32 μg/L) below the Brazilian standard (2.0 μg/L), but above the European Union standard (0.1 μg/L). Considering the water supply needs of cities located in the Pardo River Basin and the persistence of metals and herbicides, the present study indicated that there was a seasonal influence on non-carcinogenic and carcinogenic risks to human health, especially in the rainy season. Studies for water treatment plants implantation should consider the risks of exposure to persistent substances, in order to protect the population.  相似文献   

14.
The effect of various pesticides on the biofilm formation by the phytopathogenic bacterium Clavibacter michiganensis ssp. sepedonicus (Cms), the potato ring rot causative agent, was explored for the first time. Systemic herbicides: 2,4-D, diuron, glyphosate, clopyralid, fluorodifen, as well as the commercial preparations “Lazurite,” “Ridomil Gold,” and the mitochondria inhibiting pesticides analog, sodium monoiodoacetate, were studied. These pesticides' effect on the Cms biofilm formation was shown to be distinct and dependent on the agent under question. Cms biofilm formation was reduced when exposed to sodium monoiodoacetate, as well as “Lazurite” preparation, that could be due to the bactericidal effect of these agents. 2,4-D and “Ridomil Gold” preparation stimulated the biofilm formation. Systemic herbicides diuron, glyphosate, clopyralid, fluorodifen did not exert appreciable influence on the process of bacterial biofilm formation.  相似文献   

15.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

16.
Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0-20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34-42 and 71-79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

17.
Abstract

Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0–20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34–42 and 71–79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

18.
Abstract

The objective of this study was to identify and quantify herbicide residues in water samples of rain, cisterns, streams, ponds, springs, semi-artesian wells, dams and a river in the Rio Samambaia sub-basin in the Federal District and eastern Goiás. A total of 287 samples were collected from 20 farms in the sub-basin in the rainy (February, summer) and dry (August, winter) seasons in 2016. Aminomethylphosphonic acid (AMPA, a glyphosate metabolite), clethodim, chlorimuron-ethyl, diuron, fluazifop acid (a fluazifop-p-butyl metabolite and the active ingredient), haloxyfop acid (a haloxyfop-methyl metabolite and the active ingredient), imazamox, mesotrione, metsulfuron, nicosulfuron and pendimethalin were not identified in any water sample. In the rainy season, approximately 99% of the samples contained residues at least one of the evaluated herbicides; in the dry season (, 100% of the samples contained residues of at least one of the evaluated herbicides. When considering only detection frequency, metribuzin, atrazine, clomazone and haloxyfop-methyl were the main herbicides found in the water of the Samambaia River sub-basin. In turn, based on levels higher than the limit of quantification, the main compounds detected were atrazine, clomazone, haloxyfop-methyl and glyphosate. In both seasons, the highest relative concentrations of herbicides for the rainy and dry seasons were found in spring water, 25% and 56%, respectively, and dam water, 23% and 16%, respectively.  相似文献   

19.
Halogenated phenylurea herbicides are not very toxic by themselves to animals, but their exposure to UV light may significantly increase the toxicity of their solutions. Absorption of light may indeed induce a phototransformation of the herbicide with a possible formation of more toxic intermediate photoproducts. Fortunately in environmental conditions photolysis is usually slow and photoproducts do not accumulate appreciably. Microtox was used for the evaluation of the toxicity of the crude irradiated solutions of some phenylurea herbicides. The sharp initial increase of toxicity shown by metobromuron solutions is mainly due to intermediate photoproducts which rapidly disappear. In the case of diuron and metoxuron toxicity is due to minor photoproducts and it does not disappear so rapidly. Hence the decrease of herbicide concentration is not necessarily associated to a lower toxicity of the solution.  相似文献   

20.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号