首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

2.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

3.
Hydrologic/water quality models are increasingly used to explore management and policy alternatives for managing water quality and quantity from intensive silvicultural practices with best management practices (BMPs) in forested watersheds due to the limited number of and cost of conducting watershed monitoring. The Agricultural Policy/Environmental eXtender (APEX) model was field-tested using 6 yr of data for flow, sediment, nutrient, and herbicide losses collected from nine small (2.58 to 2.74 ha) forested watersheds located in southwest Cherokee County in East Texas. Simulated annual average stream flow for each of the nine watersheds was within +/- 7% of the corresponding observed values; simulated annual average sediment losses were within +/- 8% of measured values for eight out of nine watersheds. Nash-Sutcliffe efficiency (EF) values ranged from 0.68 to 0.94 based on annual stream flow comparison and from 0.60 to 0.99 based on annual sediment comparison. Similar to what was observed, simulated flow, sediment, organic N, and P were significantly increased on clear-cut watersheds compared with the control watersheds. APEX reasonably simulated herbicide losses, with an EF of 0.73 and R(2) of 0.74 for imazapyr, and EF of 0.65 and R(2) of 0.68 for hexazinone based on annual values. Overall, the results show that APEX was able to predict the effects of silvicultural practices with BMPs on water quantity and quality and that the model is a useful tool for simulating a variety of responses to forest conditions.  相似文献   

4.
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   

5.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

6.
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable.  相似文献   

7.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

8.
ABSTRACT: The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50‐year simulation, Wells Creek, a third‐order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourth‐order warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/1. We estimated that 46 mg/1 would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/1 may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied.  相似文献   

9.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

10.
An issue in evaluating the success of agricultural management practices is the speed that eroded particles make their way through the downstream waters. In this study at Old Woman Creek (OWC) and Rock Creek (RC), two largely agricultural watersheds in Ohio, the flux of sediment and radionuclides (7Be, 210Pb, and 137Cs) in thunderstorm runoff was examined to better understand transport of eroded agricultural soils. The hydrograph in an agricultural area under no-till was similar in timing, but of lesser magnitude, than the hydrograph from a similar-sized area under conventional tillage. The activities of 210Pb and 7Be are linearly correlated and are higher in suspended sediments derived from no-till subbasins than those derived from conventionally tilled subbasins. A suspended sediment plume, identified by its unique radionuclide signature, was traced through 17 km of OWC stream channel in approximately 13.4 h (0.35 m/s). The downstream exponential decrease of 7Be activities in suspended sediments 3 to 12 h after passage of the sediment plume was used to estimate transport distances of suspended sediment from 2 to 17 km, respectively. Transport distances of suspended sediments were also calculated from wave kinematics and indicate that at OWC suspended sediment transport distances were longer in streams draining areas of no-till (19-26 km) than in the streams draining areas of conventional tillage (6-15 km). Suspended sediments travel 7 to 22 km at RC. The transport distances are long relative to the lengths of the stream channel and indicate that erosion control methods implemented in the watershed should be reflected quickly in downstream waters.  相似文献   

11.
Economic costs, water quantity/quality benefits, and cost effectiveness of agricultural best management practices (BMPs) at a watershed scale are increasingly examined using integrated economic‐hydrologic models. However, these models are typically complex and not user‐friendly for examining the effects of various BMP scenarios. In this study, an open source geographic information system (GIS)‐based decision support system (DSS), named the watershed evaluation of BMPs (WEBs), was developed for creating BMP scenarios and simulating economic costs and water quantity/quality benefits at farm field, subbasin, and watershed scales. This DSS or WEBs interface integrated a farm economic model, the Soil and Water Assessment Tool (SWAT), and an optimization model within Whitebox Geospatial Analysis Tools (GAT), an open source GIS software. The DSS was applied to the 14.3‐km2 Gully Creek watershed, a coastal watershed in southern Ontario, Canada that drains directly into Lake Huron. BMPs that were evaluated included conservation tillage, nutrient management, cover crop, and water and sediment control basins. In addition to assessing economic costs, water quantity/quality benefits, and cost effectiveness of BMPs, the DSS can be also used to examine prioritized BMP types/locations and corresponding economic and water quantity/quality tradeoffs in the study watershed based on environmental targets or budget constraints. Further developments of the DSS including interface transfer to other watersheds are also discussed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

12.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

13.
ABSTRACT: Most studies of nutrient loss from small study watersheds ignore a potentially important loss transported by the suspended sediment load. We proposed that the geology and vegetation of a watershed are predictors of the nutrient and heavy metal transporting capacity of its suspended sediment. Analyses of acid-digestable and extractable nutrients showed differences for sediments derived from ponderosa pine forests in the Southwest on different geologies. These differences were similar for soil, stream bank, and stream channel material for a given site. Suspended sediment collections had nutrient concentrations similar to those of stream channel collections. Different vegetation on a given geology affected primarily the organic matter content, cation exchange capacity, total P, and levels of extractable nutrients in sediment.  相似文献   

14.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

15.
ABSTRACT: Valley Creek watershed is a small stream system that feeds the Schuylkill River near Philadelphia, Pennsylvania. The watershed is highly urbanized, including over 17 percent impervious surface cover (ISC) by area. Imperviousness in a watershed has been linked to fish community structure and integrity. Generally, above 10 to 12 percent ISC there is marked decline in fish assemblages with fish being absent above 25 percent ISC. This study quantifies the importance of ground water in maintaining fish species diversity in subbasins with over 30 percent ISC. Valley Creek contains an atypical fish assemblage in that the majority of the fish are warm‐water species, and the stream supports naturally reproducing brown trout, which were introduced and stocked from the early 1900s to 1985. Fish communities were quantified at 13 stations throughout the watershed, and Simpson's species diversity index was calculated. One hundred and nine springs were located, and their flow rates measured. A cross covariance analysis between Simpson's species diversity index and spring flow rates upstream of fish stations was performed to quantify the spatial correlation between these two variables. The correlation was found to be highest at lag distances up to about 400 m and drop off significantly beyond lag distances of about 800 m.  相似文献   

16.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   

17.
Nine small (2.5 ha) and four large (70-135 ha) watersheds were instrumented in 1999 to evaluate the effects of silvicultural practices with application of best management practices (BMPs) on stream water quality in East Texas, USA. Two management regimes were implemented in 2002: (i) conventional, with clearcutting, herbicide site preparation, and BMPs and (ii) intensive, which added subsoiling, aerial broadcast fertilization, and an additional herbicide application. Watershed effects were compared with results from a study on the same small watersheds in 1981, in which two combinations of harvesting and mechanical site preparation without BMPs or fertilization were evaluated. Clearcutting with conventional site preparation resulted in increased nitrogen losses on the small watersheds by about 1 additional kg ha(-1) each of total Kjeldahl nitrogen (TKN) and nitrate-nitrogen (NO(3)-N) in 2003. First-year losses were not significantly increased on the large watershed with a conventional site preparation with BMPs. Fertilization resulted in increased runoff losses in 2003 on the intensive small watersheds by an additional 0.77, 2.33, and 0.36 kg ha(-1) for NO(3)-N, TKN, and total phosphorus, respectively. Total loss rates of ammonia nitrogen (NH(4)-N) and NO(3)-N were low overall and accounted for only approximately 7% of the applied N. Mean loss rates from treated watersheds were much lower than rainfall inputs of about 5 kg ha(-1) TKN and NO(3)-N in 2003. Aerial fertilization of the 5-yr-old stand on another large watershed did not increase nutrient losses. Intensive silvicultural practices with BMPs did not significantly impair surface water quality with N and P.  相似文献   

18.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

19.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

20.
Well-calibrated models are cost-effective tools to quantify environmental benefits of conservation practices, but lack of data for parameterization and evaluation remains a weakness to modeling. Research was conducted in southwestern Oklahoma within the Cobb Creek subwatershed (CCSW) to develop cost-effective methods to collect stream channel parameterization and evaluation data for modeling in watersheds with sparse data. Specifically, (i) simple stream channel observations obtained by rapid geomorphic assessment (RGA) were used to parameterize the Soil and Water Assessment Tool (SWAT) model stream channel variables before calibrating SWAT for streamflow and sediment, and (ii) average annual reservoir sedimentation rate, measured at the Crowder Lake using the acoustic profiling system (APS), was used to cross-check Crowder Lake sediment accumulation rate simulated by SWAT. Additionally, the calibrated and cross-checked SWAT model was used to simulate impacts of riparian forest buffer (RF) and bermudagrass [ (L.) Pers.] filter strip buffer (BFS) on sediment yield and concentration in the CCSW. The measured average annual sedimentation rate was between 1.7 and 3.5 t ha yr compared with simulated sediment rate of 2.4 t ha yr Application of BFS across cropped fields resulted in a 72% reduction of sediment delivery to the stream, while the RF and the combined RF and BFS reduced the suspended sediment concentration at the CCSW outlet by 68 and 73%, respectively. Effective riparian practices have potential to increase reservoir life. These results indicate promise for using the RGA and APS methods to obtain data to improve water quality simulations in ungauged watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号