首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
Sejkora, Patrick, Mary Jo Kirisits, and Michael Barrett, 2011. Colonies of Cliff Swallows on Highway Bridges: A Source of Escherichia coli in Surface Waters. Journal of the American Water Resources Association (JAWRA) 47(6):1275–1284. DOI: 10.1111/j.1752‐1688.2011.00566.x Abstract: Animals, such as birds, are a source of fecal indicator bacteria and pathogens in the environment. Our objective was to determine whether a colony of cliff swallows nesting underneath a bridge would yield a measurable increase in fecal indicator bacteria (specifically Escherichia coli) in the underlying creek. When the swallows were absent, dry‐weather concentrations of E. coli upstream and downstream of the bridge (in Austin, Texas) were below the Texas contact recreation criteria. When the swallows were present, dry‐weather geometric‐mean E. coli concentrations increased significantly from upstream (43 most probable number [MPN]/100 ml) to downstream (106 MPN/100 ml) of the bridge. One exceedance and one near‐exceedance of the Texas single‐sample contact recreation criterion were observed during the swallows’ nesting phase. When the swallows were present, the downstream E. coli geometric‐mean concentration in storm events (875 MPN/100 ml) was significantly higher than the upstream concentration (356 MPN/100 ml), suggesting that runoff flushes swallow feces from the ground into the creek. Although the loading of E. coli from cliff swallows nesting under bridges can be significant (e.g., dry‐weather loading of 3.1 × 108 MPN/day/nest), the zoonotic potential of the cliff swallow must be examined to determine the risk to human health from contact recreation in waters contaminated with cliff swallow feces.  相似文献   

2.
Abstract: Escherichia coli was used as a bacterial tracer for the development, calibration, and validation of a watershed scale fate and transport model to be extended to a suite of reference pathogens (Cryptosporidium, Giardia, Campylobacter, E. coli O157:H7). E. coli densities in water and sediments from the Blackstone River Watershed, Massachusetts, were measured at three sites for a total of five wet weather events and three dry weather events covering three seasons. The confirmed E. coli strains were identified by ribotyping for tracking the sources of E. coli and for determining the association of downstream E. coli isolates with isolates from upstream sediments. A large number of downstream samples were associated with upstream sediment sources of E. coli. E. coli densities ranged from 71 to 6,401 MPN/100 ml in water samples and from 2 to 335 MPN/g in sediments. Pearson correlation analysis revealed significant correlations between E. coli and total coliforms in water (r = 0.777, p < 0.01) and sediments (r = 0.728, p < 0.01). In addition, E. coli concentrations in water were weakly correlated with sediment particle size and sediment concentrations (r = 0.298, p < 0.01). A hydrologic model, WATFLOOD/SPL9, was used to predict the temporal and spatial variation of E. coli in the Blackstone River. The rapid rise of stream E. coli densities was more accurately predicted by the model with the inclusion of sediment resuspension, thus demonstrating the importance of the process.  相似文献   

3.
Understanding sediment Escherichia coli levels (i.e., pathogen indicators) and their contribution to the water column during resuspension is critical for predicting in‐stream E. coli levels and the potential risk to human health. The U.S. Environmental Protection Agency's current water quality testing strategies, however, rely on water borne E. coli concentrations to assess stream E. coli levels and identify impaired waters. In this work, we conducted a scenario analysis using a range of flows, sediment/water bacteria fractions, and particle sizes to which E. coli attach to assess the impact of E. coli in streambed sediments on water column E. coli levels. We used simple sediment transport theory to calculate the potential total E. coli concentrations in a stream with and without the resuspension process. Results clearly indicate that inclusion of resuspending sediment attached E. coli is necessary for watershed assessments and data on sediment attached E. coli concentrations is much needed. When neglecting the streambed sediment E. coli concentrations, the model predicted average E. coli loads of 107 Colony Forming Units (CFU)/s; however, when streambed sediment E. coli concentrations were included in the model, the predictions ranged from 1010 to 1014 CFU/s. To evaluate the predictions, E. coli data in the streambed sediment and the water column were monitored in Squaw Creek, Iowa. Comparisons between measured and predicted E. coli loads yielded an R2‐value of 0.85.  相似文献   

4.
The Missouri Department of Natural Resources (MDNR) has closed or posted advisories at public beaches at Lake of the Ozarks State Park in Missouri because of Escherichia coli (E. coli) concentration exceedances in recent years. Spatial and temporal patterns of E. coli concentrations, microbial source tracking, novel sampling techniques, and beach‐use patterns were studied during the 2012 recreational season to identify possible sources, origins, and occurrence of E. coli contamination at Grand Glaize Beach (GGB). Results indicate an important source of E. coli contamination at GGB was E. coli released into the water column by bathers resuspending avian‐contaminated sediments, especially during high‐use days early in the recreational season. Escherichia coli concentrations in water, sediment, and resuspended sediment samples all decreased throughout the recreational season likely because of decreasing lake levels resulting in sampling locations receding away from the initial spring shoreline as well as natural decay and physical transport out of the cove. Weekly MDNR beach monitoring, based solely on E. coli concentrations, at GGB during this study inaccurately predicted E. coli exceedances, especially on weekends and holidays. Interestingly, E. coli of human origin were measured at concentrations indicative of raw sewage in runoff from an excavation of a nearby abandoned septic tank that had not been used for nearly two years.  相似文献   

5.
A sub‐model for the Soil and Water Assessment Tool (SWAT) is developed to predict Escherichia coli levels in the streambed sediment as well as in the water column. New formulations to estimate the levels of E. coli in streambed sediment and the water column are derived. These equations include calculations of E. coli resuspension from the streambed sediment to the water column, E. coli deposition from the water column to the streambed sediment, E. coli growth in the streambed sediment and the water column, and instream E. coli routing. These formulations were programmed in FORTRAN and integrated into SWAT. The modified SWAT model was applied to Squaw Creek Watershed, Iowa, to predict E. coli levels in the stream. Escherichia coli concentrations in the streambed sediment and the water column were monitored extensively in this watershed, and observations were used to verify the model predictions. The model proposed here can predict E. coli concentrations in streambed sediment as well as in the water column. Approximately 58% of the predictions of E. coli levels in the bed sediment were within 1 order of magnitude from the observed value, and in the water column 83% of the predictions of E. coli levels were within 1 order of magnitude. Results suggest that the proposed model will help predictions of instream bacterial contamination.  相似文献   

6.
The variability of indicator bacteria over a fine resolution time scale on the order of minutes has yet to be fully understood. In this study, we collected more than 700 Escherichia coli samples at a 10‐ and 30‐min resolution in an urban watershed in Houston. A Bacteria Diurnal Sag (BDS) marked with daytime exponential decay followed by an exponential nighttime regeneration was observed. This pattern was observed during all sampled events but varied depending on other variables. The concentrations during a 24‐h period varied 1 to 5 orders of magnitude and the fecal load was at least 10 times lower than what would be obtained using a single morning E. coli measurement, the typical sampling scheme in most monitoring programs. Decay rates, ranging from 3.67 to 24.7/day, decreased E. coli concentrations to below the water‐quality standards from 14:00 to 18:00 h and were strongly influenced by water temperatures and solar radiation intensities. Rapid regeneration occurred on the order of 9.41 to 64.1/day allowing E. coli concentrations to return to their pre‐decay levels. The data indicated that four to six samples taken between 06:00 and 18:00 h may be sufficient to define the BDS depending on stream conditions, and that a threshold concentration of approximately 100 MPN/dl (most probable number in a deciliter) existed for the studied urban watershed. These findings have significant implications for water‐quality monitoring, regulation, and compliance.  相似文献   

7.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   

8.
9.
ABSTRACT: Fecal‐indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal‐coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal‐indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal‐indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal‐indicator bacteria concentrations were highly variable over a two‐day period of stable streamflow, which may have implications for testing of compliance to water‐quality standards.  相似文献   

10.
Abstract: Water‐quality standards have been placed on fecal indicator organisms such as Escherichia coli in an attempt to limit the concentrations in water bodies. Cattle can be a significant source of bacteria to water systems, particularly when they are allowed direct access to streams. A flume study was conducted to quantify the effect and understand the transport of E. coli from directly deposited cattle manure. Five steady‐state flows, ranging from 0.00683 to 0.0176 m3/s, were studied and loads from a single cowpie exceeded the U.S. Environmental Protection Agency’s recommended water‐quality standards (235 CFU/100 ml) at each flow over the hour study period. Average E. coli concentrations ranged from 102 to 105 CFU/100 ml over the hour sampling period for all flows. High spatial variations in E. coli concentrations were often seen at each sampling time, with higher concentrations typically at the bottom of the flume. E. coli resuspension was initially greater at 0.5 min after deposition, for the lowest flow (105 CFU/m2/s); however, resuspension rates became similar over time, on the order of 103 CFU/m2/s. This study demonstrates that the concentrations of E. coli can vary over the water column, and therefore grab samples may inaccurately measure bacteria concentrations and loads in streams. In addition, resuspension rates were often high, so the incorporation of this process into water‐quality models is important for bacteria prediction.  相似文献   

11.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   

12.
E. coli O157:H7 is a pathogen that can be present in sewage contaminated waters. This organism poses a health risk for humans who come in contact with these waters via drinking, swimming, or shellfish consumption. A risk assessment model is needed to evaluate or quantify this risk. One possibility is the use of a computer model to simulate the fate and transport of E. coli O157:H7 downstream from a discharge point [e.g., a separate sanitary sewer overflow (SSO)]. However, this computer model would require input data regarding characteristics of this organism, which have not been previously available. One necessary input parameter is the rate at which die off of this organism occurs in a stream or river environment. Several studies were conducted to evaluate the die‐off rate of E. coli O157:H7 in an SSO impacted stream. Indicator bacteria (total coliforms, E. coli, and enterococci) were evaluated simultaneously. The results suggest that E. coli O157:H7 is not persistent — decay rates are high relative to the indicator bacteria. However, the decay plots suggest a biphasic response: initial decay is rapid, followed by an attenuated, slower decay. Hence traditional simulation methods using a single, first‐order decay rate may be inaccurate.  相似文献   

13.
Abstract: In 2003, the U.S. Geological Survey (USGS) National Water‐Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface‐sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log‐log space). Mean MeHg and THg concentrations in surface‐sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface‐sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface‐sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems.  相似文献   

14.
This study investigates hydrological controls on E. coli concentration and loading in two artificially drained agricultural watersheds (58 and 23 km(2)) of the U.S. Midwest. Stream E. coli concentrations are significantly (p < 0.02) lower at base flow than high flow; however, E. coli load is significantly higher at high flow than at low flow (p < 0.001). Although E. coli concentrations are not significantly higher (p = 0.253) in summer/fall (3269 MPN/100 mL) than in the winter/spring (2411 MPN/100 mL), E. coli load is significantly higher (p < 0.05) in winter/spring (346 MPN/day) than in summer/fall season (75 MPN/day). Correlation analysis indicates that discharge and precipitation are the best indicators of E. coli concentration and 7-d antecedent precipitation (7dP), the best indicator of E. coli loading in the watersheds studied regardless of flow conditions and location. However, E. coli concentration and loading best correlate to 7dP and turbidity at base flow. A spatial dependency is also observed at base flow with E. coli concentration and load correlating better to 7dP in the headwaters and to turbidity in the lower reaches of the watersheds studied. For high flow conditions, E. coli concentration and loading are poorly correlated to most variables, except stream water temperature and 7-d antecedent discharge. These results are consistent with those reported in the literature and suggest that, at least during base flow conditions, turbidity and 7dP may be usable in artificially drained landscapes of the Midwest to identify potential hot spots of E. coli contamination.  相似文献   

15.
Managed forests generally produce high water quality, but degradation is possible via sedimentation if proper management is not implemented during forest harvesting. To mitigate harvesting effects on total watershed sediment yield, it is necessary to understand all processes that contribute to these effects. Forest harvesting best management practices (BMPs) focus almost exclusively on overland sediment sources, whereas in‐and‐near stream sources go unaddressed although they can contribute substantially to sediment yield. Thus, we propose a new framework to classify forest harvesting effects on stream sediment yield according to their direct and indirect processes. Direct effects are those caused by erosion and sediment delivery to surface water from overland sources (e.g., forest roads). Indirect effects are those caused by a shift in hydrologic processes due to tree removal that accounts for increases in subsurface and surface flows to the stream such that alterations in water quality are not predicated upon overland sediment delivery to the stream, but rather in‐stream processes. Although the direct/indirect distinction is often implicit in forest hydrology studies, we have formalized it as a conceptual model to help identify primary drivers of sediment yield after forest harvesting in different landscapes. Based on a literature review, we identify drivers of these effects in five regions of the United States, discuss current forest management BMPs, and identify research needs.  相似文献   

16.
ABSTRACT: Data were developed within a three-year period for indicator bacteria and three species of bacterial pathogens following rural storm event hydrographs. The first flush concept was confirmed in all hydrographs. Bacterial density peaking occurred at or before the hydrograph peaks. FC and FS values were higher in more developed areas than the primary rural test site and their numerical ratios followed similar trends. Chlorine demand of storm waters varied between 8 and 16 mg/l and, the ozone requirement was greater than 32 mg/l in the same waters. Aftergrowth of total coliform bacteria occurred following chlorine and ozone doses of 16 mg/l and 32 mg/l respectively. Fecal coliform, fecal streptococci, Salmonella sp., and Pseudomonas sp. all were reduced to near detectable limits by the disinfectants up to 8 days. Staphylococcus sp. demonstrated a propensity to restablish their populations. Multiple regression analysis of the bacterial groups and species in storm waters suggested the fecal streptococci to have been the most useful group in evaluating bacterial storm water quality, with staphylocci have been closely related insofar as their statistical significance was concerned.  相似文献   

17.
ABSTRACT: Two modifications to automated pumping samplers improve discrete sampling during high flow events in small mountain streams. One modification entails mounting the intake nozzle on a bent, free-swinging metal rod supported in midstream. This allows sampling in midstream yet prevents the buildup of floatable organic debris that otherwise would cause the intake to fail. On the lower end of the rod, dynamic forces exerted by the stream keep the intake submerged over diverse flow conditions. The second modification consists of a magnetic switching device that automatically activates the pumping sampler at any preset stage on the rising limb of a storm hydrograph. The pumping sampler then remains on to collect one sample per hour which allows field crews sufficient time to change bottles before the sampler fills its 28-bottle capacity. This device improves the capability to sample frequently at fixed intervals, yet with minimal maintenance between runoff events. It also ensures sample collection during the rising limb of the hydrograph when flow and sediment concentrations are rapidly changing. Both modifications have improved data collection during periods of storm runoff.  相似文献   

18.
ABSTRACT: Suspended sediment samples were collected in west-side tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochiorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochiorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chiordane. Dissolved samples were analyzed for three organochiorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamfiow were greater during the winter storm runoff - median concentration of 3,590 mg/L versus 489 mg(L and median streamfiow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochiorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.  相似文献   

19.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

20.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号