首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abundance of fecal caliform bacteria is a weak index of the presence of human pathogens in wastewater entering coastal waters. In spite of this, use of fecal caliform indices for management purposes is widespread. To gain insight into interpretation of fecal coliform data, we evaluated size of stocks of fecal coliforms in water, sediments, and sea wrack, in Buttermilk Bay, a coastal embayment in Massachusetts. Sediments contained most of the fecal coliforms. Fecal coliforms in sediments were as much as one order of magnitude more abundant than in the water column or in sea wrack. The fecal coliforms in sediments of Buttermilk Bay were so abundant that resuspension of fecal coliforms from just the top 2 cm of muddy sediments could add sufficient cells to the water column to have the whole bay exceed the federal limit of fecal coliforms for shellfishing. The major sources of fecal coliforms to the bay were water-fowls, surface runoff, groundwater, and streams. Waterfowl were the largest source of fecal coliforms during cold months; surface runoff, streams, and groundwater were most important during warm months. Redirection of surface runoff pipes is unlikely to be a very successful management action since contributions via this source are insufficient to account for the measured increases in concentrations of fecal coliforms in water. Removal of waterfowl is also unlikely to be useful, since fecal coliform concentrations leading to closures of shellfish beds and swimming areas are most frequent during warm months when waterfowl are rarest. Rates of loss of fecal caliform cells from the water column by death and tidal exchange were high. Mortality of cells was about an order of magnitude larger than losses by tidal exchange. The amounts of fecal coliforms brought into the bay by waterfowl, surface runoff, groundwater, and streams are an order of magnitude smaller than the losses by mortality and tidal removal. This implies that there is an additional source of fecal coliforms within the bay. We suggest that resuspension of the upper layers of sediments can easily account for the fecal coliforms present in the water. Fecal coliform content of water and shellfish were not correlated. In contrast, sediment and shellfish fecal coliform abundances were significantly related. Monitoring of fecal coliforms in sediments may provide a better assessment of shellfish than sampling of water. The large fecal coliform stock in sediments should be the first priority for management. Efforts ought to be directed toward the reduction of sediment fecal coliform stocks. Lowering nutrient additions to coastal water bodies may be one practical approach.  相似文献   

2.
Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRD-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coli concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.  相似文献   

3.
Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.  相似文献   

4.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

5.
ABSTRACT: This study presents the results of fecal coliform (FC) sampling in the Rawls Creek, South Carolina, watershed during 1999 and 2000. The work was undertaken because the watershed is listed on the 303(d) list for South Carolina due to FC excursions. The watershed is 43.8 percent residential, 35 percent forest, 5.7 percent mixed urban, 4.9 percent commercial, and 4.8 percent agriculture. Samples were taken at 15 stations during eight field trips divided into two phases to characterize FC inputs from subbasins and to integrate results from upstream sampling. FC concentrations ranged from 135 to 730 colonies/100 ml. Results suggest that retention ponds in the area are a significant factor in attenuation of FC concentrations. Catchments with the largest contiguous impervious areas are the greatest source of FC. The highest concentrations of FC were observed at stations just downstream from a large detention basin that intercepts storm runoff from a large commercial area. Further analysis of the design and performance of that structure is suggested. The Koon Branch tributary is less than 20 percent of the land area in the watershed but may contribute 40 percent of the fecal loading. The results of this study confirm the importance of site assessments to aid understanding of nonpoint source pollution in complex watersheds.  相似文献   

6.
Models that accurately predict fecal coliform bacteria (FCB) concentrations, one of the most widely used measures of estuarine water quality, are needed to improve land use decision-making. Rapidly occurring changes in coastal land uses and the influence on water quality increases the urgency of having improved decision tools. For this study, samples were collected monthly from six coastal ponds, two tidal creeks and four shallow water wells for up to 212 years. These data were used along with other measures of environmental conditions and land classes within each watershed to construct quantitative relationships between combinations of variables and both total and presumed wildlife sources of FCB. Linear regression, bootstrapping and generalized additive modeling that incorporates both linear and nonlinear terms were used. Results of repeated simultaneous sampling on the same tide stage of ponds and downstream estuarine creeks suggest that most FCB come from wildlife and that the ponds effectively remove these bacteria except immediately following heavy rainfall. Predictive models for concentrations of total and presumed wildlife bacteria are provided along with simple measures to estimate watershed boundaries. It is proposed that these tools can be used to minimize impacts on receiving water body quality. The models can be used to test alternative development approaches within coastal watersheds similar to that found in the southeastern USA coastal zone as well as to evaluate specific proposed landscape alterations.  相似文献   

7.
ABSTRACT: During the summer of 1971 about 150 water samples were examined for total and fecal coliform bacteria in the Upper Illinois Waterway at 19 river stations. The data per station were found to be normal geometric distributed. Bacteria densities changed with sampling dates and generally decreased with water movement downstream. Several sewage treatment effluents made marked pulses along the bacterial die-off curves. The observed fecal coliform results were evaluated in terms of the Illinois Pollution Control Board's standards. The FC:TC ratio on the waterway for each station were presented. Using Chick's Law, coliforms death rates were estimated. Efforts to correlate observed total and fecal densities with temperature, flow, algal densities, dissolved oxygen, and 5-day biochemical oxygen demand were not successful. (KEY TERMS: algae; biochemical oxygen demand; coliform bacteria; dissolved oxygen; flow; stream survey; temperature; water pollution; water quality standards)  相似文献   

8.
ABSTRACT: A model for estimating seasonal fecal coliform concentrations in the Tchefuncte River as a function of river discharge was developed. Data on fecal coliform concentration were obtained from the Louisiana Department of Health and Hospitals and were available for a period of 15 years (1975 through 1992) from three locations. Stream flow data were obtained from a gaging station of the U. S. Geological Survey at Folsom, Louisiana. These data were available for 49 years (1943 through 1991). The climate of the area is characterized by different precipitation/runoff mechanisms for the summer and winter seasons. The division for seasons used in this analysis was May through October (summer season), and November through April (winter season). Because of the combined effects of climatic mechanisms causing precipitation and the seasonal variation of evapotranspiration, runoff is greater in the winter season resulting in higher fecal coliform counts in the Tchefuncte River. Statistical analysis revealed a statistically significant relationship between fecal coliform concentration and discharge for each season, at each of three sites on the Tchefuncte River.  相似文献   

9.
ABSTRACT: Agricultural practices such as cattle grazing and animal manure application can contribute to relatively high runoff concentrations of fecal coliform (FC) and fecal streptococcus (FS). Available information, however, is inconsistent with respect to the effects of such practices as well as to measures that can discriminate among candidate sources of FC and FS. The objective of this study was to assess the effects of grazing, time of year, and runoff amounts on FC and FS concentrations and to evaluate whether FCIFS concentration ratios are consistent with earlier values reported as characteristic of animal sources. Runoff from four Northwest Arkansas fields was sampled and analyzed for fecal coliform (FC) and fecal streptococcus (FS) for nearly three years (1991–1994). Each field was grazed and fertilized, with two fields receiving inorganic fertilizer and two receiving animal manure. Runoff amount had no effect on runoff concentrations of FC or FS. There were no consistent relationships between the presence of cattle and FC and FS runoff concentrations. Both FC and FS concentrations were affected by the season during which the runoff occurred. Higher concentrations were observed during warmer months. Runoff FC concentrations exceeded the primary contact standard of 200 cfu/100 mL during at least 89 percent of all runoff events and the secondary contact standard of 1000 cfu/100 mL during at least 70 percent of the events. Ratios of FC to FS concentrations varied widely (from near zero to more than 100), confirming earlier findings that FC/FS ratios are not a reliable indicator of the source of FC and FS.  相似文献   

10.
ABSTRACT: Cowpies molded to a standard configuration and size were subjected to simulated rainfall, and the fecal coliform counts were determined using the most probable number (MPN) method of enumeration. The standard cowpie deposits were exposed to simulated rainfall once at ages 2 through 100 days. The effects of rainfall intensity and recurrent rainfall were also tested. Naturally-occurring fecal deposits were also tested to compare their results with those from the standard cowpies. A log-log regression was found to describe the decline in peak fecal coliform release with fecal deposit age. The 100-day-old fecal deposits produced peak counts of 4,200 fecal coliform per 100 milliliters of water. This quantity of release is minimal compared to the release from fresher fecal material. Rainfall intensity had little effect on peak fecal coliform release from fecal deposits that were 2 or 10 days old. At age 20 days the effect of rainfall intensity was significant; the highest intensity gave the lowest peak counts, and the lowest intensity gave the highest peak counts. The effect of rainfall intensity appears to be related to the dryness of the fecal deposits. Peak fecal coliform counts were significantly lowered when the fecal deposits were rained on more than once. This decline was thought to be produced by the loss of bacteria from the fecal deposits during the previous wettings. Standard cowpies produced a peak release regression that was not significantly different from the regression for the natural fecal deposits. Apparently, grossly manipulating the fecal deposits did not significantly change the release patterns.  相似文献   

11.
Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.  相似文献   

12.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. The purpose of this study was to compare fecal bacteria densities in karst groundwater impacted by two primary agricultural land uses in central Appalachia. Fecal bacteria densities were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Neither area had best management practices in place for controlling animal wastes. Median fecal coliform and fecal streptococcus densities were highest in cave streams draining the dairy. Median fecal coliform densities in the dairy-impacted stream were greater than 4,000 CFU/100 ml and the median fecal coliform densities in the pasture-impacted streams were less than 10 CFU/100 ml. Median fecal streptococcus densities in the same streams were greater than 2,000 CFU/100 ml and 32 CFU/100 nil, respectively. A second dairy, with best management practices for control of animal and milkhouse waste, did not appear to be contributing significant amounts of fecal bacteria to the karst aquifer. It was concluded that agriculture was affecting bacterial densities in the karst aquifer. New management practices specifically designed to protect karst groundwater resources may be one way to protect the groundwater resource.  相似文献   

13.
ABSTRACT: Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male‐specific coliphages were detected in samples from 15 sites. Male‐specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non‐human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.  相似文献   

14.
Recent studies indicate fecal coliform bacterial concentrations, including Escherichia coli (E. coli), characteristically vary by several orders of magnitude, depending on the hydrology of storm recharge and discharge. E. coli concentrations in spring water increase rapidly during the rising limb of a storm hydrograph, peak prior to or coincident with the peak of the storm pulse, and decline rapidly, well before the recession of the storm hydrograph. This suggests E. coli are associated with resuspension of sediment during the onset of turbulent flow, and indicates viable bacteria reside within the spring and stream sediments. E. coli inoculated chambers were placed in spring and stream environments within the mantled karst of northwest Arkansas to assess long term (> 75 days) E. coli viability. During the 75‐day study, a 4‐log die‐off of E. coli was observed for chambers placed in the Illinois River, and a 5‐log die‐off for chambers placed in Copperhead Spring. Extrapolation of the regression line for each environment indicates E. coli concentration would reach 1 most probable number (MPN)/100 g sediment at Copperhead Spring in about 105 days, and about 135 days in the Illinois River, based on a starting inoculation of 2.5 × 107 MPN E. coli/100 g of sediment. These in situ observations indicate it is possible for E. coli to survive in these environments for at least four months with no fresh external inputs.  相似文献   

15.
ABSTRACT: Fecal‐indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal‐coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal‐indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal‐indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal‐indicator bacteria concentrations were highly variable over a two‐day period of stable streamflow, which may have implications for testing of compliance to water‐quality standards.  相似文献   

16.
ABSTRACT: A residential single family dwelling was retrofitted to recycle graywater for landscape irrigation and toilet flushing. The objective of this study was to determine improvements in graywater quality by evaluating five simple graywater treatment systems that were easily adapted to the household plumbing. The treatment systems consisted of (1) water hyacinths and sand filtration, (2) water hyacinths, copper ion disinfection, and sand filtration, (3) copper ion disinfection and sand filtration, (4) copper/silver ion disinfection and sand filtration, and (5) 20–μm cartridge filtration. Water quality parameters measured were fecal and total coliform indicator bacteria, nitrates, suspended solids, and turbidity. Reductions in bacterial concentration, suspended solids and turbidity were achieved by all systems tested. Treatment reduced nitrate concentrations to an average of 2.6 mg/liter. Reductions in suspended solids, and turbidity were influenced more by the quality of the graywater entering the treatment system than the efficiency of the systems themselves. The water hyacinths and sand filtration system provided the best graywater quality in terms of the concentrations of fecal indicator bacteria. The system providing the best water quality in regard to average suspended solids after treatment was the water hyacinths, copper ion, and sand filtration system, and the best average turbidity was achieved by the copper/silver ion generating unit with sand filtration. All systems were capable of significant reductions in fecal indicator bacteria, suspended solids, and turbidity; however, additional treatment or disinfection would be necessary to further reduce the level of coliform and fecal coliform bacteria to achieve regulatory standards in the State of Arizona.  相似文献   

17.
ABSTRACT: Knowledge of coliform transport and disappearance may provide information for project design and operation that minimizes potential water quality problems such as the violation of body contact recreation standards. Storm events were sampled in the Caddo River above DeGray Reservoir, Arkansas, and then tracked through the reservoir using the increased turbidity associated with the storm flows. Fecal coliforms were sampled both in the river and throughout the water column in the reservoir. In general, increased fecal coliform concentrations were closely associated with the increased turbidity resulting from the storm flows. This association existed for all three types of turbidity plume movement - overflow, interflow, and underflow. As the turbidity plume moved down the reservoir, fecal coliform concentrations decreased due to die-off, settling, and dilution. With several assumptions, it is possible to use this information to assist in locating recreational sites in a reservoir or to anticipate possible body contact standard violations at existing recreation sites.  相似文献   

18.
Temporal variation and persistence of bacteria in streams   总被引:1,自引:0,他引:1  
Better understanding of bacterial fate and transport in watersheds is necessary for improved regulatory management of impaired streams. Novel statistical time series analyses of coliform data can be a useful tool for evaluating the dynamics of temporal variation and persistence of bacteria within a watershed. For this study, daily total coliform data for the Little River in East Tennessee from 1 Oct. 2000 to 31 Dec. 2005 were evaluated using novel time series techniques. The objective of this study was to analyze the total coliform concentration data to: (i) evaluate the temporal variation of the total coliform, and (ii) determine whether the total coliform concentration data demonstrated any long-term or short-term persistence. For robust analysis and comparison, both time domain and frequency domain approaches were used for the analysis. In the time domain, an autoregressive moving average approach was used; whereas in the frequency domain, spectral analysis was applied. As expected, the analyses showed that total coliform concentrations were higher in summer months and lower in winter months. However, the more interesting results showed that the total coliform concentration exhibited short-term as well as long-term persistence ranging from about 4 wk to approximately 1 yr, respectively. Comparison of the total coliform data to hydrologic data indicated both runoff and baseflow are responsible for the persistence.  相似文献   

19.
Fecal contamination of water bodies causes a public health problem and economic loss. To control such contamination management actions need to be guided by sound science. From 2007–2009 a study was undertaken to determine the sources of fecal bacteria contamination to the marine waters adjoining the Town of Wrightsville Beach, North Carolina, USA. The research effort included sampling for fecal coliform and Enterococcus bacteria, sampling for optical brighteners, dye studies, and use of molecular bacterial source tracking techniques including polymerase chain reaction (PCR) and terminal restriction fragment polymorphism (T-RFLP) fingerprinting of the Bacteroides–Prevotella group. Of the 96 samples collected from nine locations during the study, the water contact standard for Enterococcus was exceeded on 13 occasions. The T-RFLP fingerprint analyses demonstrated that the most widespread source of fecal contamination was human, occurring in 38% of the samples, with secondary ruminant and avian sources also detected. Optical brightener concentrations were low, reflecting a lack of sewage line leakage or spills. A lack of sewer leaks and lack of septic systems in the town pointed toward discharge from boat heads into the marine waters as the major cause of fecal contamination; this was supported by dye studies. Based on these data, the Town initiated action to have the U.S. Environmental Protection Agency declare the coastal waters (out to 3 nautical miles), the nearby Atlantic Intracoastal Waterway and its tributaries a no-discharge zone (NDZ) to alleviate the human fecal pollution. The Town garnered supporting resolutions from other local communities who jointly petitioned the North Carolina Department of Environmental and Natural Resources. This State regulatory agency supported the local government resolutions and sent an application for an NDZ to the EPA in April 2009. The EPA concurred, and in February 2010 the coastal waters of New Hanover County, NC, became the first marine area on the U.S. eastern seaboard between Delaware and the Florida Keys to be declared a no-discharge zone.  相似文献   

20.
Lake Holiday, a human-made recreational lake in northern Illinois, was threatened with closure due to high bacterial levels. A factorially designed experiment with multivatiate responses was developed to study and identify the main sources of pollution. Data on total coliform, fecal coliform, fecal streptococci, dissolved oxygen, pH, ammonia-N, total phosphorus, nitrate/nitrite-N were analyzed using regression models describing dam spillway loads as a function of source loads and time. The results suggest that the relationships among source, time, and load are complex, even though only two sources account for most of the lake's loading Stevens Brook, which receives the discharge from the Somonauk Sewage Treatment Plant, and Somonauk Creek, which is the major drainage, contribute high loads of bacteria and nutrients to the lake. The influent loads contributed to the lake are discharged at the dam over about 4 weeks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号