首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

2.
It is well established that wet environment potential evapotranspiration (PET) can be reliably estimated using the energy budget at the canopy or land surface. However, in most cases the necessary radiation measurements are not available and, thus, empirical temperature‐based PET models are still widely used, especially in watershed models. Here we question the presumption that empirical PET models require fewer input data than more physically based models. Specifically, we test whether the energy‐budget‐based Priestley‐Taylor (P‐T) model can reliably predict daily PET using primarily air temperature to estimate the radiation fluxes and associated parameters. This method of calculating PET requires only daily minimum and maximum temperature, day of the year, and latitude. We compared PET estimates using directly measured radiation fluxes to PET calculated from temperature‐based radiation estimates at four humid AmeriFlux sites. We found good agreement between P‐T PET calculated from measured radiation fluxes and P‐T PET determined via air temperature. In addition, in three of the four sites, the temperature‐based radiation approximations had a stronger correlation with measured evapotranspiration (ET) during periods of maximal ET than fully empirical Hargreaves, Hamon and Oudin methods. Of the three fully empirical models, the Hargreaves performed the best. Overall, the results suggest that daily PET estimates can be made using a physically based approach even when radiation measurements are unavailable.  相似文献   

3.
This study evaluates a remotely sensed and two ground‐based potential evapotranspiration (PET) products for hydrologic application in the Upper Colorado River Basin (UCRB). The remotely sensed Moderate Resolution Imaging Spectroradiometer product (MODIS‐PET) is a continuous, daily time series with 250 m resolution derived using the Priestley‐Taylor (P‐T) equation. The MODIS‐PET is evaluated against regional flux tower data as well as a synthetic pan product (Epan; 0.125°, daily) derived from the North American Land Data Assimilation System (NLDAS) and a Hargreaves PET derived from DAYMET variables (DAYMET‐PET; 1 km, daily). Compared to point‐scale PET computed using regional flux tower data, the MODIS‐PET had lower errors, with RMSE values ranging from 2.24 to 2.85 mm/day. Epan RMSE values ranged from 3.70 to 3.76 mm/day and DAYMET‐PET RMSE values ranged from 3.55 to 4.58 mm/day. Further investigation showed biases in temperature and radiation data contribute to uncertainty in the MODIS‐PET values, while bias in NLDAS temperature, downward shortwave (SW↓), and downward longwave (LW↓) propagate in the Epan estimates. Larger discrepancies between methods were observed in the warmer, drier regions of the UCRB, however, the MODIS‐PET was more responsive to landcover transitions and better captured basin heterogeneity. Results indicate the satellite‐based MODIS product can serve as a viable option for obtaining spatial PET values across the UCRB.  相似文献   

4.
It is often necessary to find a simpler method in different climatic regions to calculate reference crop evapotranspiration (ETo) since the application of the FAO‐56 Penman‐Monteith method is often restricted due to the unavailability of a comprehensive weather dataset. Seven ETo methods, namely the standard FAO‐56 Penman‐Monteith, the FAO‐24 Radiation, FAO‐24 Blaney Criddle, 1985 Hargreaves, Priestley‐Taylor, 1957 Makkink, and 1961 Turc, were applied to calculate monthly averages of daily ETo, total annual ETo, and daily ETo in an arid region at Aksu, China, in a semiarid region at Tongchuan, China, and in a humid region at Starkville, Mississippi, United States. Comparisons were made between the FAO‐56 method and the other six simple alternative methods, using the index of agreement D, modeling efficiency (EF), and root mean square error (RMSE). For the monthly averages of daily ETo, the values of D, EF, and RMSE ranged from 0.82 to 0.98, 0.55 to 0.98, and 0.23 to 1.00 mm/day, respectively. For the total annual ETo, the values of D, EF, and RMSE ranged from 0.21 to 0.91, ?43.08 to 0.82, and 24.80 to 234.08 mm/year, respectively. For the daily ETo, the values of D, EF, and RMSE ranged from 0.58 to 0.97, 0.57 to 0.97, and 0.30 to 1.06 mm/day, respectively. The results showed that the Priestly‐Taylor and 1985 Hargreaves methods worked best in the arid and semiarid regions, while the 1957 Makkink worked best in the humid region.  相似文献   

5.
Abstract: Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low‐lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to document the hydrology and a method to quantify the water budget of a first‐order forested watershed, WS80, located within the USDA Forest Service Santee Experimental Forest northeast of Charleston, South Carolina. Annual Rainfall for the 2003 and 2004 periods were 1,671 mm (300 mm above normal) and 962 mm (over 400 mm below normal), respectively. Runoff coefficients (outflow as a fraction of total rainfall) for the 2003 and 2004 periods were 0.47 and 0.08, respectively, indicating a wide variability of outflows as affected by antecedent conditions. A spreadsheet‐based Thornthwaite monthly water balance model was tested on WS80 using three different potential evapotranspiration estimators [Hamon, Thornthwaite, and Penman‐Monteith (P‐M)]. The Hamon and P‐M‐based methods performed reasonably well with average absolute monthly deviations of 12.6 and 13.9 mm, respectively, between the measured and predicted outflows. Estimated closure errors were all within 9% for the 2003, 2004, and seasonal water budgets. These results may have implications on forest management practices and provide necessary baseline or reference information for Atlantic Coastal Plain watersheds.  相似文献   

6.
ABSTRACT: Accurate estimates of evapotranspiration from areas dominated by wetland vegetation are needed in the water budget of the Upper St. Johns River Basin. However, local data on evapotranspiration rates, especially in wetland environments, were lacking in the project area. In response to this need, the St. Johns River Water Management District collected evapotranspiration field data in Fort Drum Marsh Conservation Area over the period 1996 through 1999. Three large lysimeters were installed to measure the evapotranspiration from different wetland environments: sawgrass (Cladium jamaicense), cattail (Typha domingensis), and open water. In addition, pan evaporation was measured with a standard class “A” pan. Concurrently, meteorological data including rainfall, solar radiation, wind speed, relative humidity, air temperature, and atmospheric pressure were collected. By comparing computed evapotranspiration rates with those measured in the lysimeters, parameters in the Penman‐Monteith, the Priestley‐Taylor, and Reference‐ET methods, and evaporation pan coefficients were estimated for monthly and seasonal cycles. The results from the data collected in this study show that mean monthly evapotranspiration rates, computed by the different methods, are relatively close. From a practical point of view, results indicate that the evaporation pan can be used equally well as the more complex and data‐intensive methods. This paper presents the measured evapotranspiration rates, evaporation pan coefficients, and the estimated parameter values for three different methods to compute evapotranspiration in the project area. Since local data on evaporation are often scarce or lacking, this information may be useful to watershed hydrologists for practical application in other project regions.  相似文献   

7.
Previous historic trends analyses on 21st Century hydrologic data in the United States generally focus on annual flow statistics and have continued to use USGS hydro‐climatic data network (HCDN) stations, although post‐1988 diversions and runoff regulations are not reflected in the HCDN. Using a more recent dataset, Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES II), compiled by Falcone (2012), which includes more watersheds with reference conditions, a comprehensive analysis of changes in seasonal, and annual streamflow in Wisconsin watersheds is demonstrated. Given the pronounced influence of seasonal hydrology in Wisconsin watersheds, the objective of this study is to elucidate the nature of temporal (annual, seasonal, and monthly) changes in runoff. Considerable temporal and regional variability was found in annual and seasonal streamflow changes between the two historic periods 1951‐1980 and 1981‐2010 considered in the study. For example, the northern watersheds show relatively small changes in streamflow discharge ranging from ?6.0 to 4.2%, while the southern watersheds show relatively large increases in streamflow discharge ranging from 13.1 to 18.2%. To apportion streamflow changes to climate and nonclimatic factors, a method based on potential evapotranspiration changes is demonstrated. Results show that nonclimatic factors account for more than 60% of changes in annual runoff in Wisconsin watersheds considered in the study.  相似文献   

8.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   

9.
Abstract: Information on evapotranspiration (ET) can help us understand water balance, particularly in forested watersheds. Previous studies in China show that ET was relatively low (30‐40% of total precipitation) in the Minjiang Valley located in the upper reach of the Yangtze River Basin. However, this conclusion was derived from research on small‐scale watersheds (<100 km2). The objective of this paper was to present ET information on meso‐scale watersheds in the Minjiang Valley. Four meso‐scale watersheds (1,700‐5,600 km2) located in the Minjiang Valley were used to estimate ET using the water balance approach. We first generated forest vegetation variables (coniferous forest percentage, forest cover percentage, and derived forest vegetation index) using remote sensing data. Landsat 5 TM satellite images, acquired on June 26, 1994, were selected for the vegetation classification. Actual annual ET was calculated based on 11‐year estimated precipitation and measured streamflow data (1992‐2002). We also calculated potential ET (PET) using an improved Thornthwaite model for all four watersheds for the period of 1992‐1998. PET can provide additional information about potential capacity of water flux to atmosphere in the region. Seasonal (dry and rainy) PET and ET for all studied watersheds were also estimated for comparison purposes as the water balance approach, at shorter than annual scales, would likely provide inaccurate estimates of ET. The dominant vegetations in the Minjiang Valley were grasslands, conifer forests, and shrub‐lands. Our results confirmed that both ET and PET for three studied meso‐scale watersheds in the Minjiang Valley is relatively low (39.5‐43.8 and 28.2‐47.7% for ET and PET, respectively), with an exception of ET in the Yuzixi watershed being 71.1%. This result is generally consistent with previous research at small watershed scales. Furthermore, the low ET across various scales in the Minjiang Valley may be related to the unique deeply cut valley environment.  相似文献   

10.
ABSTRACT: SWMHMS is a conceptual computer modeling program developed to simulate monthly runoff from a small nonurban watershed. The input needed to run model simulations include daily precipitation, monthly data for evapotranspiration determination (average temperature, crop consumptive coefficients, and percent daylight hours), and six watershed parameter values. Evapotranspiration was calculated with the Blaney-Criddle equation while surface runoff was determined using the Soil Conservation Service curve number procedure. For watershed parameter evaluation, SWMHMS provides options for both optimization and sensitivity analysis. Observed runoff data are required along with the model input previously mentioned in order to conduct parameter optimization. SWMEIMS was tested with data from six watersheds located in different regions of the United States. Model accuracy was generally found to be very good except on watersheds having substantial snowfall accumulation. In having only six watershed parameters, SWMHMS is less complex to use than many other computer programs that calculate monthly runoff. Consequently, SWMHMS may find its greatest application as an educational tool for students learning principles of hydrologic modeling, such as parameter evaluation procedures and the impacts of input data uncertainty on model results.  相似文献   

11.
ABSTRACT: Growing‐season evapotranspiration and surface energy and water balances were investigated for an extensive, bulrush‐dominated wetland in the Upper Klamath National Wildlife Refuge of south‐central Oregon, a semi‐arid region with competing demands for scarce water resources. Turbulent fluxes of sensible and latent heat were measured by eddy covariance for 1.2 to 1.9 days during each of four site visits during late‐May to mid‐October 1997. Mean daytime latent heat flux and the Bowen ratio ranged from 148 to 178 W m?2 and from 0.38 to 0.51, respectively, during late May, mid‐July, and late August site visits. By mid‐October, when the plant canopy had senesced, daytime latent heat flux and the Bowen ratio averaged 46 W m?2 and 2.8, respectively. An hourly Penman‐Monteith (PM) model that was fitted to the surface‐flux data provided values for the surface resistance to water‐vapor diffusion that ranged from 78 s m?1 during late August to 206 s m?1 during mid‐October. Similarly, a Priestley‐Taylor (PT) model provided values for the PT multiplier (a) that ranged from 0.96 during late August to 0.37 during mid‐October. The PM and PT models predicted evapotranspiration totals of 560 and 480 mm, respectively, for May 28 to October 12, 1997.  相似文献   

12.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

13.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

14.
This study presents new data‐driven, annual estimates of the division of precipitation into the recharge, quick‐flow runoff, and evapotranspiration (ET) water budget components for 2000‐2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick‐flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick‐flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick‐flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first‐order estimates of these quantities across the CONUS, even where field measurements are sparse.  相似文献   

15.
Accurate estimation of evapotranspiration (ET) is essential to improve water use efficiency of crop production systems managed under different water regimes. The Agricultural Policy/Environmental eXtender (APEX) model was used to simulate ET using four potential ET (ETp) methods. The objectives were to determine sensitive ET parameters in dryland and irrigated cropping systems and compare ET simulation in the two systems using multiple performance criteria. Measured ET and crop yield data from lysimeter fields located in the United States Department of Agriculture‐Agricultural Research Service Bushland, Texas were used for evaluation. The number of sensitive parameters was higher for dryland (11–14) than irrigated cropping systems (6–8). Only four input parameters: soil evaporation plant cover factor, root growth soil strength, maximum rain intercept, and rain intercept coefficient were sensitive in both cropping systems. Overall, it is possible to find a set of robust parameter values to simulate ET accurately in APEX in both cropping systems using any ETp method. However, more computation time is required for dryland than irrigated cropping system due to a relatively larger number of sensitive input parameters. When all inputs are available, the Penman–Monteith method takes the shortest computation time to obtain one model run with robust parameter values in both cropping systems. However, in areas with limited datasets, one can still obtain reasonable ET simulations using either Priestley–Taylor or Hargreaves. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

16.
ABSTRACT: Average daily values of the Priestley‐Taylor coefficient (a) were calculated for two eddy covariance (flux) tower sites with contrasting vegetation, soil moisture, and temperature characteristics on the North Slope of Alaska over the 1994 and 1995 growing seasons. Because variations in a have been shown to be associated with changes in vegetation, soil moisture, and meteorological conditions in Arctic ecosystems, we hypothesized that a values would be significantly different between sites. Since variations in the normalized difference vegetation index (NDVI) follow patterns of vegetation community composition and state that are largely controlled by moisture and temperature gradients on the North Slope of Alaska, we hypothesized that temporal variations in a respond to these same conditions and thus co‐vary with NDVI. Significant differences in a values were found between the two sites in 1994 under average precipitation conditions. However, in 1995, when precipitation conditions were above average, no significant difference was found. Overall, the variations in a over the two growing seasons showed little relationship to the seasonal progression of the regional NDVI. The only significant relationship was found at the drier, upland study site.  相似文献   

17.
Abstract: Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6‐km2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967‐1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use/land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff/precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon’s potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover‐streamflow relationships during a 50‐year time frame. This paper highlighted the importance of eco‐physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.  相似文献   

18.
ABSTRACT: A study of the influence of climate variability on streamflow in the southeastern United States is presented. Using a methodology previously applied to watersheds in Australia and the United States, a long range streamflow forecast (0 to 9 months in advance) is developed. Persistence (i.e., the previous season's streamflow) and climate predictors of the previous season are used to forecast the following season's (winter and spring) streamflow of the Suwannee River located in northern Florida. The winter and spring streamflow is historically the most likely to have severe flood events due to large scale cyclonic (frontal) storms. Results of the analysis indicated that a strong El Nino‐Southern Oscillation (ENSO) signal exists at various lead times to the winter and spring streamflow of the Suwannee River. These results are based on the high correlation values of two commonly used measurements of ENSO strength, the Multivariate ENSO Index (MEI) and Sea Surface Temperature Range 1. Using the relationships developed between climate and streamflow, a continuous exceedance probability forecast was developed for two Suwannee River stations. The forecast system provided an improved forecast for ENSO years. The ability to predict above normal (flood) or below normal (drought) years can provide communities the necessary lead time to protect life, property, sensitive wetlands, and endangered and threatened species.  相似文献   

19.
Hydrologic-landscape regions in the United States were delineated by using geographic information system (GIS) tools combined with principal components and cluster analyses. The GIS and statistical analyses were applied to land-surface form, geologic texture (permeability of the soil and bedrock), and climate variables that describe the physical and climatic setting of 43,931 small (approximately 200 km2) watersheds in the United States. (The term "watersheds" is defined in this paper as the drainage areas of tributary streams, headwater streams, and stream segments lying between two confluences.) The analyses grouped the watersheds into 20 noncontiguous regions based on similarities in land-surface form, geologic texture, and climate characteristics. The percentage of explained variance (R-squared value) in an analysis of variance was used to compare the hydrologic-landscape regions to 19 square geometric regions and the 21 U.S. Environmental Protection Agency level-II ecoregions. Hydrologic-landscape regions generally were better than ecoregions at delineating regions of distinct land-surface form and geologic texture. Hydrologic-landscape regions and ecoregions were equally effective at defining regions in terms of climate, land cover, and water-quality characteristics. For about half of the landscape, climate, and water-quality characteristics, the R-squared values of square geometric regions were as high as hydrologic-landscape regions or ecoregions.  相似文献   

20.
ABSTRACT: Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET‐to‐ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation‐measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year‐to‐year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号