首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
选取燃烧型煤和原煤的典型链条炉,应用自行设计的固定源烟气颗粒物稀释采样系统,现场测试细颗粒物PM_(2.5)、PM_(10)和金属元素的排放特征。结果表明,型煤燃烧细颗粒物的排放比例高于原煤,型煤燃烧除尘器进口、出口PM_(2.5)质量比原煤燃烧分别增加715%和708%。燃烧型煤时,As和Pb在各粒径段的质量比均比原煤大。同时,由于型煤燃烧可吸入颗粒物的排放比例增加,包含或附着在烟尘上的金属元素排放比例也相应增加。  相似文献   

2.
天津市颗粒物中元素化学特征及来源   总被引:8,自引:0,他引:8       下载免费PDF全文
2006年的8月—12月采集天津市PM2.5和PM10样品,分析了Na、Al等17种元素质量浓度及月变化特征,PM2.5中元素平均质量浓度为17.2μg/m3,占PM2.5的10.3%。微量元素Zn、Pb在PM10和PM2.5中含量较高,Cr、V、Ni、As等则在细粒子中有明显分布。用富集因子法分析发现,PM2.5中元素富集程度高于PM10。地壳元素除Ca外,均无明显富集,微量元素则呈现不同程度的富集,以Cd富集最为明显。颗粒物分析表明,土壤尘、燃煤、机动车尾气及化工行业是PM2.5中无机元素的主要来源。  相似文献   

3.
针对《环境空气质量指数(AQI)技术规定(试行)》(HJ 633-2012)中对空气质量AQI实时发布存在的欠缺,从增加颗粒物1 h浓度的AQI分级浓度限值及颗粒物24 h滑动平均值计算方法改进着手,解决PM2.5和PM10的24 h滑动平均值实时延迟、1 h平均值代替24 h滑动平均值偏高等问题。  相似文献   

4.
对2017年除夕至初一期间(1月27—28日),湖南省14个市州的78个城市环境空气自动监测站点数据进行了分析。结果表明,烟花爆竹的集中燃放会在短时间内造成严重的大气污染,其中,对PM10和PM2.5影响最为显著,其次是SO2,NO2和O3受影响程度相对最小。集中燃放烟花对PM10和PM2.5的小时值增长倍数贡献明显。对全省14个城市PM10和PM2.5的小时值最大贡献量分别为195~652和116~680 μg/m3;最大增高倍数分别为1.8~10.5倍和2.2~15.8倍。其中对郴州市的影响程度最高。城市集中燃放烟花爆竹期间,ρ(PM2.5)/ρ(PM10)明显上升,初一01:00最大值为0.69。气象条件也是影响春节期间空气质量的重要因素,风速小、逆温强、湿度大和无降水等不利气象条件使污染物浓度不断累积,形成持续性污染过程。  相似文献   

5.
以河源市区2016年3月27日—4月4日污染过程为研究对象,基于同期气象条件与空气质量监测数据,分析了PM_(2.5)与气象因子间的相关性,探究河源市区PM_(2.5)污染变化特征。结果表明,3月30日河源市ρ(PM_(2.5))/ρ(PM_(10))和ρ(PM_(2.5))/ρ(CO)分别为0.87和0.08,明显高于其他时段,说明当天细颗粒物污染老化和二次转化程度突出。在此次污染过程的2个不同阶段,河源市ρ(PM_(2.5))波动受到多项气象要素共同影响,其中与气压先后呈现较强负相关(R~2=0.646 2)和不明显正相关(R~2=0.006 5),与气温呈现不明显正相关(R~2=0.008 4,R~2=0.033 9),与风速先后呈现弱负相关(R~2=0.105 2)和不明显正相关(R~2=0.072 9),与相对湿度先后呈现弱正相关(R~2=0.391 3)和弱负相关(R~2=0.176 9)。通过比较该时段河源市与周边城市的ρ(PM_(2.5))变化趋势及后向轨迹分析,发现河源市与周边城市在相似的气象背景条件下,PM_(2.5)污染主要来源于本地源排放和珠三角区域传输。  相似文献   

6.
2014年春季上海典型生物质燃烧污染过程分析   总被引:2,自引:0,他引:2  
针对2014年5月末华东地区出现的大范围秸秆焚烧污染事件(BB),利用上海浦东超级站多种在线监测数据,并结合卫星遥感、数值模拟等方法,对污染期间前(BB-前)、中(BB-中)、后(BB-后)的时空演化进程进行了分析。结果表明,期间平均ρ(PM2.5)和ρ(BC)分别由BB-前的24.3和1.24μg/m3攀升至BB-中的111.90和5.38μg/m3,小时峰值出现在5月27日,达到238.0和15.1μg/m3,BB-后虽有显著好转,但\"翘尾\"现象明显,ρ(PM2.5)和ρ(BC)为34.6和1.49μg/m3;在空气污染扩散不利条件下,生物质燃烧污染会加重其他多种污染物的污染水平;农田秸秆燃烧烟羽的传输受气象条件所限,使得上海外围火点的多寡与城市污染的水平无必然联系。  相似文献   

7.
对昆山市区域7个点位夏秋季的5中水溶性无机阴离子(SO2-4、NO-3、NO-2、Cl-、F-)的污染特征进行了调查,结果表明,昆山市夏季大气PM2.5中5种离子平均值排序为:ρ(SO2-4)ρ(Cl-)ρ(NO-3)ρ(F-)ρ(NO-2);秋季平均值排序为:ρ(SO2-4)ρ(NO-3)ρ(Cl-)ρ(F-)ρ(NO-2)。SO2-4、NO-3和Cl-3者的总量在PM2.5中占比20%。除F-以外各区域离子的平均值秋季比夏季要高。ρ(NO-3)/ρ(SO2-4)表明,固定污染源在昆山市大气颗粒物污染中仍然占很大比重,但大部分测点的比值接近1,说明移动源也是昆山大气颗粒物的重要污染源。  相似文献   

8.
根据PM2.5中重金属监测国标分析方法,从PM2.5采样方法、采样保存条件、滤膜材质性能等方面说明利用空气自动采样滤膜监测PM2.5中铅和镉是可行的;对手工采样(石英滤膜)和Beta射线法自动采样(自动采样滤膜)2种方法,对PM2.5实际样品中铅和镉的结果进行比较,结果显示:自动采样滤膜的空白检出和检出限均满足铅和镉的监测需求,铅和镉的回收率分别为95.2%~107%和91.8%~105%,与手工采样方法相比测得铅和镉的相对误差分别为3.6%~8.4%和1.3%~10.8%,从实践角度进一步证明了利用自动采样滤膜对PM2.5中铅和镉进行监测是可行的。  相似文献   

9.
利用2013年佛山市8个国控大气自动监测站点ρ(PM_(2.5))监测数据,分析佛山市PM_(2.5)污染的时空分布特征,并诊断诱发PM_(2.5)高污染过程的关键天气类型。结果表明,佛山市2013年PM_(2.5)年均值为53μg/m3,高于国家二级标准,污染主要集中在三水区中部、南海区中部和禅城区北部。佛山市ρ(PM_(2.5))表现出明显的季节变化和日变化特征,秋、冬季是PM_(2.5)的高污染季节,其值夜间略高于白天,呈典型的双峰型分布,08:00—09:00短暂出现一个浓度的小峰值,推测与上班交通高峰有关。对PM_(2.5)持续高污染发生的地面天气形势分析表明,高压出海是诱发佛山市PM_(2.5)高污染事件最主要的天气类型。  相似文献   

10.
选取2015年珠海市国控监测站ρ(PM_(2.5))数据,分析PM_(2.5)中有机碳(OC)、元素碳(EC)、水溶性离子组分等化学组成,ρ(PM_(2.5))时空分布特征,以及与气象因素的相互关系。结果表明,2015年珠海市PM_(2.5)年均值为31.0μg/m3,表现出显著的时间分布规律,月均值呈现\"V\"型趋势,PM_(2.5)中主要化学组分是有机物(OM),占总质量的34.0%,其次是硫酸根(SO2-4),占总质量的26.9%,具有明显的季节分布特征,呈现冬高夏低分布;ρ(PM_(2.5))日变化呈现双峰型分布,其值工作日显著高于非工作日;ρ(PM_(2.5))与平均温度、相对湿度、风速呈现负相关关系,与气压呈现显著正相关关系;珠海市ρ(PM_(2.5))空间分布总体呈现\"东高西低,北重南轻\"变化趋势,有机物、SO2-4和NH+4空间分布呈现东部高于西部趋势,颗粒物浓度受地形、气候因素和海域环境等影响呈现多样化分布趋势。  相似文献   

11.
南京市大气颗粒物中多环芳烃变化特征   总被引:2,自引:2,他引:2       下载免费PDF全文
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

12.
利用实时监测数据分析2017—2021年邯郸市及周边区县PM2.5和O3污染特征。研究发现:2017—2021年各地区PM2.5年均质量浓度持续降低,轻度及轻度以上污染逐渐减少;2017—2019年O3污染加剧,2020年起O3年均质量浓度逐年下降,污染天不断减少。PM2.5和O3-8 h分别在1月(平均浓度为127.3 μg/m3,平均超标22d)和6月(平均浓度为233.4 μg/m3,平均超标22 d)污染最严重。结合气象参数分析来看,PM2.5与温度、风速和降水量呈显著负相关,与相对湿度呈显著正相关;O3-8h与温度呈显著正相关,而与风速、湿度和降水量的相关性较弱。后向轨迹和潜在源分析表明:邯郸地区PM2.5典型污染月受山西省中部地区污染传输影响最大,O3典型污染月受河南省东部污染传输影响最大。  相似文献   

13.
基于东莞市大气复合污染超级监测站的监测数据,选取2017年12月一次典型空气污染过程,对污染期间气象要素、大气颗粒物组分特征和污染物来源进行综合研究。结果表明,在污染期间,首要污染物为PM2.5,日均值为86μg/m3,其主要化学组分依次是OC、NO_3^-和SO_42-,分别占PM2.5的19.7%,16.1%和14.9%;在不利的气象条件下,本地污染排放和外源输入的一次污染物快速生成二次有机物、硝酸盐和硫酸盐,是造成该次空气污染的主要原因; PM2.5污染主要来源为机动车尾气(27.7%)及二次无机源(19.0%)。  相似文献   

14.
于2017年1月—2018年1月在潍坊市城区8个监测点位按季节采集了环境空气颗粒物样品,对其组分进行分析;采用电子低压冲击仪(ELPI)稀释采样法和稀释四通道法2种源采样方法同步采集源样品,建立了潍坊市本地化的燃煤源、钢铁源等排放源的颗粒物源成分谱;结合排放源清单,利用化学质量平衡受体模型(CMB)开展不同行业的细颗粒物(PM2.5)和可吸入颗粒物(PM10)的精细化来源解析。结果表明,各监测点位ρ(PM2.5)、ρ(PM10)年均值均超过环境空气质量二级标准;潍坊市城市扬尘、土壤风沙尘、建筑水泥尘特征组分分别为硅(Si)、Si、钙(Ca),燃煤尘和造纸碱回收尘的特征组分均为硫酸根离子(SO42-);PM2.5首要的贡献源类为煤烟尘,分担率为36%;其次为机动车尘,分担率为25.4%;扬尘的分担率为21.8%;煤烟尘中分担率最高的是工业燃煤(18%);机动车尘中以载货汽车分担率最大(14%)。PM10首要的贡献源类也是煤烟尘,分担率为30.9%,其次是扬尘(27.6%)、机动车尘(21.5%);煤烟尘中分担率最高的是工业燃煤,为15.4%,机动车尘中以载货汽车分担率最大,为11.8%。工艺过程的分担率均较低。  相似文献   

15.
对2014—2016年齐齐哈尔市PM_(2.5)与PM_(10)质量浓度的时间变化特征进行简要分析,并探究PM_(2.5)/PM_(10)以及PM_(2.5)与PM_(10)的相关性。结果表明:2014—2016年齐齐哈尔的PM_(2.5)与PM_(10)的年均质量浓度分别为36.7、62.9μg/m~3,且呈逐渐下降趋势;冬季的PM_(2.5)与PM_(10)浓度最高,秋季次之,春季与夏季相对较低;2014—2016年PM_(2.5)与PM_(10)质量浓度月变化趋势基本相同,整体呈现2—6月逐渐下降,9—11月逐渐上升的规律;PM_(2.5)与PM_(10)质量浓度的日变化均呈双峰现象;对PM_(2.5)与PM_(10)进行线性拟合,相关系数为0.896 3。同时,残差分析也说明两者拟合情况良好,四季相关系数为r_(秋季)(0.982 2)r_(冬季)(0.964 4)r_(夏季)(0.943 9)r_(春季)(0.829 6);2014—2016年PM_(2.5)/PM_(10)平均值为55.27%,大气颗粒物PM_(2.5)的贡献率高达一半以上。  相似文献   

16.
西安市区大气中PM2.5和PM10质量浓度污染特征   总被引:1,自引:1,他引:1       下载免费PDF全文
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。  相似文献   

17.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

18.
对2021年影响江苏省的沙尘天气过程开展研究,分析受影响的时间、区域特征及环境空气质量特征。结果表明,影响江苏省的沙尘天气过程共计13次,全省累计受影响229 d。从时间分布看,沙尘天气过程多发生在1月、3—5月,2月、11月较少,6—10月和12月无沙尘天气过程。从区域分布看,苏北地区受沙尘天气过程影响较显著,受影响天数>20 d的城市均分布于此。受沙尘天气过程影响,且东北偏北风或东北风输送时,可吸入颗粒物(PM10)和细颗粒物(PM2.5)较易出现小时高值。沙尘过程造成PM10日均质量浓度超标的天数占比为38.0%,造成PM2.5日均质量浓度超标的天数占比仅为12.7%;扣除沙尘天气过程影响后,PM2.5和PM10年均质量浓度分别较扣除前下降1和6μg/m3,沙尘天气过程对PM10质量浓度的影响大于对PM2.5质量浓度的影响。受沙尘天气过程影响时,环境空气质量为轻度污染及以上级别占...  相似文献   

19.
2013年苏州春季一次重污染天气的过程分析   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了2013年3月在江苏范围内的一次重污染天气过程,重点分析苏州在此次污染过程中大气污染的变化特征。污染过程中,苏州市颗粒物浓度上升较为明显, PM10的小时质量浓度最高达548μg/m3, PM2.5质量浓度也达到197μg/m3,污染持续时间为2 d,3月8—9日当地空气质量均达到中度污染水平。根据后向轨迹模型、颗粒物离子浓度的分析,此次污染是由外来浮尘及苏州本地污染物排放所造成的区域霾污染影响所致。根据监测结果与实际污染特征,针对性地提出了对策和措施。  相似文献   

20.
西安市环境空气PM2.5污染现状及对策初探   总被引:1,自引:2,他引:1       下载免费PDF全文
文章通过对西安市城市环境空气PM2.5试点监测数据深入分析,初步摸清了区域PM2.5污染水平及分布规律,提出了污染防治对策和建议,对现阶段的环境空气PM2.5污染防治有着重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号