首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Usefulness of a method of artificial foliage was tested for estimation of total ionic inputs from the atmosphere to forest ecosystems, as well as of processes relevant to ionic fluxes through tree canopies: uptake, leaching, passive flow. The studies were performed in Norway spruce and European beech stands in Karkonosze Mountains (Poland), in 1995-97. Artificial leaves of increasing leaf area index: 0, 2, 6 and 12 m(2) m(-2 )were placed above standard rain collectors. It has been found that total atmospheric fluxes of H(+), NH(4)(+), Ca(2+), Mg(2+), Pb(2+), NO(3)(-) and SO(4)(2-) rose as surface area of the foliage increased. This was especially true for nitrate, sulphate and ammonium. No such relationship was found for K(+), Na(+), Zn(2+), Cd(2+), Cu(2+) and PO(4)(3-). The increase in anion fluxes exceeded that in neutralising cations (NH(4)(+), Na(+), K(+), Mg(2+), Ca(2+)) and led to progressive rainwater acidification with the increase in the foliage area. An analysis of net canopy exchange (atmospheric input-throughfall flux) has shown that SO(4)(2-), PO(4)(3-), Na(+), Ca(2+) and Cu(2+) flowed passively through the tree crowns; NH(4)(+), NO(3)(-), Zn(2+), Cd(2+) and occasionally Pb(2+) were efficiently absorbed, whereas K(+) was leached from the canopies. Beech was more effective in modifying ionic pool from the atmosphere than spruce. This related to H(+) (greater absorption) and Mg(2+) (greater leaching). It has been demonstrated that the results concerning trends in net canopy exchange and produced by the simple method of artificial foliage are comparable to more sophisticated techniques of the measurements. This proves the method to be useful.  相似文献   

2.
Sampling of canopy fluxes (throughfall and stemflow) below low structured vegetation with a small-scale, intricate canopy architecture is difficult, and representative sampling with most methods is questionable. In the present study, two sampling methods for canopy fluxes below grassland vegetation are compared. Method I sampled canopy fluxes of moisture inefficiently, because stemflow volumes were not quantitatively included. Canopy fluxes of ions calculated with method I necessitated assumptions on equal concentrations in actually sampled throughfall and non-sampled stemflow. Method II sampled canopy fluxes of ions quantitatively, because the total volume of throughfall and stemflow percolated through a mixed bed of ion exchange resins below the canopy. Ion-specific differences between the two methods were observed. For ions with foliar leaching, such as K+ and Ca2+, higher canopy fluxes were recorded with method II than with method I. In contrast, for ions with foliar uptake, such as NH4+ and NO3-, canopy fluxes were found to be less with method II than with method I. Canopy fluxes of inorganic nitrogen below Mesobrometum grassland were 2.35 and 1.52 kmol(c) ha(-1) year(-1) for methods I and II, respectively, and 2.85 and 7.90 kmol(c) ha(-1) year(-1) for K+. It is argued that these differences result from under-estimated (foliar leaching) or over-estimated (foliar uptake) concentrations in stemflow by the first method. Canopy fluxes for SO4(2-) were not statistically different, indicating that canopy exchange of SOx was quantitatively unimportant, and that both methods estimated atmospheric input equally well.  相似文献   

3.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

4.
Precipitation chemistry was studied in the Metropolitan Region of Rio de Janeiro (MRRJ). This study reveals that rainwater in the MRRJ is affected by emissions of air pollutants and provides essential data for future estimates of regional biogeochemical cycles and the impacts of acid deposition on tropical ecosystems. The volume-weighted mean (VWM) pH was 4.77, varying from 3.50 to 6.85. Sea-salt aerosols were the dominant sources of the Na+, Cl- and Mg2+. Excess SO4(2-), Ca2+ and K+ comprised 82, 91, and 87% of their total VWM concentrations, respectively. There were very strong correlations (r > 0.75, P > 0.01) for NO3- and H+, NO3- and excess(exc-)SO4(2-), NH4+ and exc-K+, and exc-SO4(2-) and exc-Ca2+, suggesting causal relationships between these ion pairs. The VWM concentrations of all major ions, except H+, were higher in the dry season, with dry to wet VWM concentration ratios varying from 1.1 (NH4+) to 4.7 (for total K+).  相似文献   

5.
Hydrogen ions in precipitation vary primarily with (SO4 + NO3) concentration. However the slope of the H: (SO4 + NO3) relation for high concentrations (0.60 and 0.61) is twice that at low concentrations (0.32 and 0.22) in European and US samples respectively. Sulphuric and nitric acid dominate precipitation in the US. Precipitation in Europe, although nearly equally acid, is dominated by NH4+, Ca2+, and Mg2+ salts at total ionic concentrations 2 and 3 times higher. Ion concentrations in precipitation, other than H, are proportional to their respective emission fluxes.  相似文献   

6.
The spatial variability of throughfall deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(+), O(4)(2-) to a Norway spruce (Picea abies (L.) Karst.) forest was intensively examined during the period October 1986 to October 1987. Large systematic spatial variability of the atmospheric deposition within the forest was observed. The flux of throughfall water was higher away from the trunk compared to the flux close to the trunk. In contrast to this, the deposition of all substances was considerably higher close to the trunk compared to the deposition at the periphery of the canopy. A linear decrease in deposition as a function of the distance from the nearest tree trunk was found. Further, the deposition varied quite dramatically between trees according to their size. The observed spatial variability in throughfall may be due to variabilities in the processes taking part in altering the distribution and composition of the precipitated water as it moves through the canopy. The influence of these processes of precipitation, wash-off, dry deposition and canopy exchange is discussed, and it is found that both increased dry deposition and canopy exchange in the tree tops contribute to the higher solute fluxes found close to the tree trunk.  相似文献   

7.
The annual average concentrations (1986-1997) of the major ions SO4(2-), NO3-, Cl-, NH4+, Na+, Mg2+, Ca2+, and K+ in precipitation are analyzed for selected EMEP stations. The objective is to determine the ion patterns or typologies in precipitation by principal component analysis (PCA) combined with a cluster analysis. SO4(2-) and NO3- ions are predominant in central and eastern Europe. This area corresponds to high emissions of SO2 and NO2. Sea spray ions are predominant in coastal sites. The soil components show an important contribution in southern Europe, possibly due to the soil dust transported from northern Africa.  相似文献   

8.
Chen SJ  Hsieh LT  Tsai CC  Fang GC 《Chemosphere》2003,53(1):29-41
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days.  相似文献   

9.
A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.  相似文献   

10.
Major ions (Cl-, NO3(-), SO4(2-), Ca2+, Mg2+, Na+, K+ and NH4(+)) were analysed in wet and dry deposition samples collected for 2 years using a polyethylene bottle and funnel collector at Agra in India. The deposition of ionic components (Ca2+ and Mg2+) derived from natural sources i.e. soil were higher than those of anthropogenic origin. In rainwater samples, non-sea-salt fraction was found to be 60-90%. In both wet and dry deposition Ca2+ was found to be the dominant ion which may be due to its large particle diameter. Results suggest that most of the acidity, which occurs due to NO3(-), SO4(2-) and Cl- is neutralized by alkaline constituents, which originate from airborne local soil and dust transported from the Thar desert. Acid neutralizing capacity of soil has also been quantified and found to be 33 x 10(3) neqg(-1). Using deposition data, the critical load for acidity of soil with respect to Ashoka and Eucalyptus was evaluated. The present level of deposition of S and N was found to be much lower than critical loads calculated for S and N. Critical load of exceedance in terms of deposition acidity was also calculated and found to be negative. This indicates that with respect to these species, the ecosystem is protected at the current level of deposition.  相似文献   

11.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

12.
Atmospheric dry deposition to leaf surfaces at a rural site of India   总被引:1,自引:0,他引:1  
Dry deposition flux of major ions (Na+, K+, Ca2+, Mg2+, NH4+, F-, Cl-, NO3- and SO4(2-) to natural surfaces [guava (Psidium guyava) and peepal (Ficus religiosa) leaves] are determined at Rampur, a rural site of semi-arid region of India. Dry deposition flux is the highest for Ca2+ on guava leaves and for NH4+ on peepal leaves. Overall dry deposition flux is higher on guava leaves than of peepal leaves. The variation in deposition flux may be due to surface characteristics (surface roughness) and arrangement of leaves. Peepal leaves are arranged along the axis of the stem, whereas guava leaves are at right angles to the stem. The deposition flux of cations contributes 66% and 76% of dry deposition of all major ions on guava and peepal leaves, respectively as soil is major contributor towards dry deposition flux in tropical regions. ANOVA revealed no significant seasonal difference in deposition, although there is a trend for higher in winter. Deposition velocities of NH4+, NO3- and SO4(2-) are greater on guava leaves than peepal leaves, which can be attributed to the rougher surface of the guava leaf.  相似文献   

13.
Throughfall chemistry was studied in a mature Sitka spruce plantation in order to investigate canopy interactions, such as nitrogen absorption, cation leaching, and neutralization of rainfall passing through the canopy. The plantation had been exposed to six different simulated mist treatments including N (NH(4)NO(3)) and S (H(2)SO(4) at pH 2.5) in four replicated blocks since 1996. Throughfall and rainfall were collected from May to September 2000. The results showed that 30-35% of the applied N was retained by the canopy. There were linear relationships between the loss of H(+) and increased K(+), Mg(2+) and Ca(2+) deposition through the canopy. However these increases in K(+), Mg(2+) and Ca(2+) deposition accounted for only about 50% of total neutralization of the acidity. The relationship between the anion deficits in throughfall and the loss of H(+) implied that weak organic acid anions were involved in the neutralization of the acidity in throughfall.  相似文献   

14.
The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K+ and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO4(2-), from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH4+ and K+ ions from TF+SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K+ concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH4+ concentration was positively correlated with the CA. The net fluxes of NH4+ and NO3(-) from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K+ or uptake of NH4+.  相似文献   

15.
A 6-month field intercomparison study on precipitation measurements was performed at Schagerbrug near the west coast in the Netherlands. Twenty bulk sampling systems and two wet-only samplers were evaluated on accuracy, sampling strategy and performance under field conditions. Bulk precipitation fluxes of NO3-, NH4+, H+ and Kjeldahl-N generally could be determined with a greater accuracy than bulk precipitation fluxes of SO4(2-), Na+, Cl-, Mg2+, Ca2+, Alkalinity and H+. Bulk precipitation fluxes of K+ generally had the lowest accuracy. Only 20% of the sampling systems differed less than 10% from the best estimate, whereas most systems (60%) differed more than 20% from the best estimate. The inaccuracy induced by the sampling system appeared to be much larger than that resulting from the analysis of the samples by different laboratories as determined by ring-tests.  相似文献   

16.
2010年10月至2011年9月采集百色市右江区大气PM10样品,分析PM10及其水溶性无机离子的化学特征与来源。结果表明:(1)百色市右江区大气PM10为13.89~319.44μg/m3,年均117.48μg/m3,年均值超过《环境空气质量标准》(GB 3095-2012)二级标准(100μg/m3)。百色市右江区大气可吸入颗粒物的污染主要出现在春冬季节。(2)水溶性无机离子浓度年均值依次为SO24->NO3->Cl->NH4+>K+>Na+>Mg2+>F-,SO24-、NO3-和Cl-浓度最高,分别占水溶性无机离子的57.7%、14.9%和14.5%。(3)百色市右江区大气PM10呈较强的酸性,高浓度的SO42-可能是导致百色市右江区大气PM10呈较强酸性的主要原因。(4)PM10的季节变化受气温和风速的影响极显著;气象因素对SO42-、NO3-、F-的影响不显著。(5)主因子分析表明,PM10中水溶性无机离子可能来自3个方面,Cl-和NO3-主要来自于当地低烟卤煤燃烧排放的烟气;Mg2+、K+和Na+主要来自于自然源;F-、SO24-和NH4+主要来自于混合源。  相似文献   

17.
With the aim of estimating the chemical composition of bulk precipitation (wet + dry) in Cubat?o, rainwater samples were collected at several localities in the Cubat?o region from May 1984 to October 1985. The levels of some inorganic ions (Na+, Ca2+, K+, Mg2+, Cl-, SO4(2-), NH4+, PO4(3-)) were measured by atomic absorption spectrophotometry, turbidimetry and titration analysis. Correlation and Fisher discrimination indices, principal component and varimax loading and scores were determined in the multivariate statistical data treatment. The results showed that ionic concentrations in rainwater from Vila Parisi are significantly higher than those of Cubat?o Centro, Santos and Serra do Mar. The ionic compositions of the Vila Parisi rainwater seem to be mainly determined by local anthropogenic activities (industrial pollution). Besides the influence of this factor on water quality, there is also a natural oceanic contribution involving Cl- and Na+ at the other locations.  相似文献   

18.
Acid neutralization of precipitation in Northern China   总被引:4,自引:0,他引:4  
There is an increasing concern over the impact of human-related emissions on the acid precipitation in China. However, few measurements have been conducted so far to clarify the acid-neutralization of precipitation on a regional scale. Under a network of 10 sites across Northern China operated during a 3-year period from December 2007 to November 2010, a total of 1118 rain and snow samples were collected. Of this total, 28% was acid precipitation with pH < 5.6. Out of these acid samples, 53% were found heavily acidic with pH value below 5.0, indicating significantly high levels of acidification of precipitation. Most of the acidity of precipitation was caused by H2SO4 and HNO3, their relative contribution being 72% and 28%, respectively. However; the contribution of HNO3 to precipitation acidity will be enhanced due to the increasing NO(x) and stable SO2 emissions in future. Neutralization factors for K+, NH4+, Ca2+, Na+, and Mg2+ were estimated as 0.06, 0.71, 0.72, 0.15, and 0.13, respectively. The application of multiple regression analysis further quantified higher NH4+ and Ca2+ contribution to the neutralization process, but the dominant neutralizing agent varied from site to site. The neutralization was less pronounced in the rural than urban areas, probably due to different levels of alkaline species, which strongly buffered the acidity. Presence of high concentrations of basic ions was mainly responsible for high pH of precipitation with annual volume-weighted mean (VWM) values larger than 5.6 at several sites. It was estimated that in the absence of buffering ions, for the given concentration of SO4(2-) and NO3-, the annual VWM pH of precipitation would have been recorded around 3.5 across Northern China. This feature suggested that emissions of particles and gaseous NH3 played very important role in controlling the spatial variations of pH of precipitation in the target areas.  相似文献   

19.
The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples. Our results showed that the origin of air masses is an important factor that controls the variation in the size distribution of the main components. Very high concentrations of WSOC as well as higher concentrations of BC were found under mostly continental influence. Besides the main ionic species (SO4(2-), NH4(+), K+) in the finest size fraction (0.17-0.53 microm), the concentration of NO3(-) was also high. The difference between the two different air mass origins is particularly expressed for Cl-, Na+, Mg2+ and Ca2+ determined in particles larger than 1.6 microm. As expected, a very good correlation was found between Na+ and Cl-. A good correlation was found between sea salt elements and elements of crustal origin (Na+, Cl-, Mg2+, Ca2+, Sr). A good relationship between typical anthropogenic tracers (K, V and Pb) was also observed. The mass growth factors, for all size fractions of aerosols collected under continental influence were very low (maximum 2.23 at 94%, 1.6-5.1 microm), while under marine influence the mass growth factors increased significantly with the particle size. At 97% humidity, the mass growth factors were 6.95 for the size fraction 0.53-1.6 microm and 9.78 for larger particles (1.6-5.1 microm).  相似文献   

20.
Atmospheric deposition to the edge of a spruce forest in Denmark   总被引:6,自引:0,他引:6  
Atmospheric deposition was measured during 1 year at the forest edge of a Norway spruce stand in Denmark. Inside the forest the deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(2) and SO(4)(2-) with canopy throughfall varies with the distance from the forest edge. The deposition at the edge is found to be 10-20 times as high as deposition to an open field and 2-8 times as high as deposition inside the stand. An exponential decrease in deposition as a function of the distance from the forest edge is found. Increased deposition of K(+) and non-sea salt Mg(2+), which mainly originates as a result of leaching from the needles may be explained by a larger leaf area index (LAI) at the forest edge. Deposition of particulate substances, especially Na(+), Cl(-), Mg(2+) and to some extent SO(4)(2-), NH(4)(+) and NO(3)(-) is increased much more than the LAI, which we believe to be caused by changes in wind movements at the forest edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号