首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
  相似文献   

2.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   

3.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

4.
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.
  相似文献   

5.
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
  相似文献   

6.
Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.
  相似文献   

7.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

8.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

9.
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg·L–1, severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg·L–1 did not mediate the inhibition. As(III), As (V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%–70% of the arsenic was discharged into the effluent, and 30%–40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor to avoid diffusion of arsenic contamination.
  相似文献   

10.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   

11.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30°C and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
  相似文献   

12.
The Environmental Burden of Disease (EBD) approach for outdoor air pollution has been used to calculate premature deaths and average potential years of life lost attributable to air pollution in China over the past 10 years with differences between the North and the South of the country being analyzed. The results indicate that: (1) Between 2004 and 2013, annual premature deaths attributable to outdoor air pollution in China ranged from 350000 to 520000. In 2013, deaths resulting from air pollution in China represented 9.9% of the country’s total deaths. (2) In 2004, the average life expectancy of the Chinese population and the number of potential years of life lost (PYLL) attributable to air pollution was 69.6 and 1.85 years respectively as compared to 74.4 and 0.67 years respectively in 2013. (3) The number of the PYLL attributable to air pollution in the northern regions of China is found to be larger than that of the southern regions. The PYLL figures of the northern and southern regions in 2004 were 2.3 and 1.8 years, respectively, with a difference of 0.5 years, as compared to 1.4 and 0.7 years respectively with a difference of 0.7 years in 2013.
  相似文献   

13.
Many studies have focused on environmental estrogen-related diseases. However, no consistent gene markers or signatures for estrogenicity have been discovered in mammals. This study investigated the estrogenic effects of 17β-estradiol on the prostate in immature male mice. Consistent U-shaped responses were seen in bodyweight, ventral prostate epithelial morphology, and miRNA expression levels. Specifically, most estradiol regulated miRNAs were downregulated at low doses of estradiol (0.2 and 2 mg·kg–1), and whose expression returned to the control level at a larger dose (200 mg·kg–1). The function of these regulated miRNAs is related to the prostate cancer and PI3K-Akt signaling pathways, which is consistent with the function of estradiol. Furthermore, the miRNA-processing machinery, Drosha, in the prostate was also regulated in a similar pattern, which could be a part of the U-shaped miRNA expression mechanism. All of these data indicate that the prostate is a reliable organ for evaluating estrogenic activity and that the typical nonmonotonic dose-response relationship could be used as a novel biomarker for estrogenicity.
  相似文献   

14.
Under the Stockholm Convention on Persistent Organic Pollutants (POPs), China is required not only to reduce polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) but also unintentionally produced polychlorinated biphenyls (PCB), hexachlorobenzene (HCB) and pentachlorobenzene (PeCBz). A baseline of the sources in China that generate these unintentional POPs is needed for both research and regulation purposes. In this paper, we have compiled production data of potential sources in China and assessed them in five-year intervals from 2000 to 2015. Most of these activities experienced changes from rapid growth to slow growth. Measured data for PCB, HCB and PeCBz in samples collected from potential sources in China were reviewed. Most information was associated to thermal processes with high potential of emission, including waste incineration and ferrous and non-ferrous metal production. In addition, high levels of PCB, HCB and PeCBz were found as impurities in a few chlorinated products or as by-products in solvent production, which suggested organochlorine industry might be important sources. Finally, based on the studies reviewed, recommendations for future actions in research and policy as well as a few regulatory issues in China are discussed.
  相似文献   

15.
Fe-BEA catalysts are active for the NH3-SCR of NO. For industrial application, a binder should be added to the Fe-BEA catalysts to make them tightly adhere to the monoliths. The addition of alumina and zirconia as binders to the Fe-BEA led to a different effect on NO conversion. The catalytic activity of the mixed samples was evaluated by the temperature programmed procedure in a flow-reactor system, and the mechanism was analyzed via SEM, BET, XRD and XPS. It was found that larger iron particles were formed by the migration of parent iron particles in the Fe-BEA catalyst with alumina. This led to the increase of Fe3+ magnitude and iron cluster, enhancing the abilities of NO oxidation and storage. Accordingly, the SCR activity increased slightly in low temperature but decreased sharply in high temperature. For the Fe-BEA with zirconia sample, NO oxidation and storage abilities decreased due to the less iron clusters. The increase of Fe3+ magnitude resulted in higher catalytic oxidation ability, which gave rise to little change in the SCR activity compared with the Fe-BEA.
  相似文献   

16.
Nitrous oxide (N2O), a potent greenhouse gas, is emitted during nitrogen removal in wastewater treatment, significantly contributing to greenhouse effect. Nitrogen removal generally involves nitrification and denitrification catalyzed by specific enzymes. N2O production and consumption vary considerably in response to specific enzyme-catalyzed nitrogen imbalances, but the mechanisms are not yet completely understood. Studying the regulation of related enzymes’ activity is essential to minimize N2O emissions during wastewater treatment. This paper aims to review the poorly understood related enzymes that most commonly involved in producing and consuming N2O in terms of their nature, structure and catalytic mechanisms. The pathways of N2O emission during wastewater treatment are briefly introduced. The key environmental factors influencing N2O emission through regulatory enzymes are summarized and the enzyme-based mechanisms are revealed. Several enzymebased techniques for mitigating N2O emissions directly or indirectly are proposed. Finally, areas for further research on N2O release during wastewater treatment are discussed.
  相似文献   

17.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

18.
Various pretreatments methods including sonication and grinding were performed on red seaweed Gelidium amansii for the subsequent extraction of agarose. The agarose products are usually extracted from agar powder products from seaweeds. In this study, the agarose was extracted using a direct polyethylene glycol (PEG) method without the need to first process the agar from seaweed. The agar extract was frozen then thawed and mixed directly with PEG solution to precipitate the agarose. The quality of agarose obtained was evaluated through physico-chemical properties analysis which includes spectral technique (FTIR), melting and boiling point, gel strength and sulfate content. These properties were compared with a non-pretreated sample and it was found that the addition of pretreatment steps improved the quality of agarose but gave a slightly lower yield. The gel strength of pretreated samples was much higher and the sulfate content was lower compared to non-pretreated samples. The best pretreatment method was sonication which gave gel strength of 742 g cm-2 and sulfate content of 0.63%. The extraction of agarose can be further improved with the use of different neutralizing agents. Pretreating the seaweed shows potential in improving the quality of agarose from seaweed and can be applied for future extraction of the agarose.
  相似文献   

19.
Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a fuel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is found to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads for 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.
  相似文献   

20.
Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h–1 to 0.99 h–1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biological treatment of wastewaters for phenol removal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号