首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

2.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

3.
We designed photoelectrochemical cells to achieve efficient oxidation of rhodamine B (RhB) without the need for photocatalyst or supporting electrolyte. RhB, the metal anode/cathode, and O2 formed an energy-relay structure, enabling the efficient formation of O 2 species under ultraviolet illumination. In a single-compartment cell (S cell) containing a titanium (Ti) anode, Ti cathode, and 10 mg·mL–1 RhB in water, the zero-order rate constant of the photoelectrochemical oxidation (kPEC) of RhB was 0.049 mg·L–1·min–1, while those of the photochemical and electrochemical oxidations of RhB were nearly zero. kPEC remained almost the same when 0.5 mol·L–1 Na2SO4 was included in the reactive solution, regardless of the increase in the photocurrent of the S cell. The kPEC of the illuminated anode compartment in the two-compartment cell, including a Ti anode, Ti cathode, and 10 mg·mL–1 RhB in water, was higher than that of the S cell. These results support a simple, eco-friendly, and energysaving method to realize the efficient degradation of RhB.
  相似文献   

4.
Trimethylolpropane (TMP) wastewater is one of the most toxic petrochemical wastewater. Toxicants with high concentrations in TMP wastewater often inhibit the activity of microorganisms associated with biological treatment processes. The hydrolysis acidification process (HAP) is widely used to pretreat petrochemical wastewater. However, the effects of HAP on the reduction of wastewater toxicity and the relevant underlying mechanisms have rarely been reported. In this study, an HAP reactor was operated for 240 days, fed with actual TMP wastewater diluted by tap water in varying ratios. The toxicity of TMP wastewater was assessed with the inhibition ratio of oxygen uptake rate. When the organic loading rates were lower than 7.5 kg COD/m3/d, the toxicity of TMP wastewater was completely eliminated. When the actual TMP wastewater was directly fed into the reactor, the toxicity of TMP wastewater decreased from 100% to 34.9%. According to the results of gas chromatographymass spectrometry analysis, four main toxicants contained in TMP wastewater, namely, formaldehyde, 2-ethylacrolein, TMP and 2-ethylhexanol, were all significantly removed, with removal efficiencies of 93.42%, 95.42%, 72.85% and 98.94%, respectively. Compared with the removal efficiency of CODCr, the reduction rate of toxicity is markedly higher by HAP. In addition, the change of microbial community in the HAP reactor, along the operation period, was studied. The results revealed that, compared with the seed sludge, Firmicutes became the dominant phylum (abundance increased from 0.51% to 57.08%), followed by Proteobacteria and Bacteroidetes (abundance increased from 59.75% to 25.99% and from 4.70% to 8.39%, respectively).
  相似文献   

5.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   

6.
Heterogeneous photocatalysis has long been considered to be one of the most promising approaches to tackling the myriad environmental issues. However, there are still many challenges for designing efficient and cost-effective photocatalysts and photocatalytic degradation systems for application in practical environmental remediation. In this review, we first systematically introduced the fundamental principles on the photocatalytic pollutant degradation. Then, the important considerations in the design of photocatalytic degradation systems are carefully addressed, including charge carrier dynamics, catalytic selectivity, photocatalyst stability, pollutant adsorption and photodegradation kinetics. Especially, the underlying mechanisms are thoroughly reviewed, including investigation of oxygen reduction properties and identification of reactive oxygen species and key intermediates. This review in environmental photocatalysis may inspire exciting new directions and methods for designing, fabricating and evaluating photocatalytic degradation systems for better environmental remediation and possibly other relevant fields, such as photocatalytic disinfection, water oxidation, and selective organic transformations.
  相似文献   

7.
Nitrous oxide (N2O), a potent greenhouse gas, is emitted during nitrogen removal in wastewater treatment, significantly contributing to greenhouse effect. Nitrogen removal generally involves nitrification and denitrification catalyzed by specific enzymes. N2O production and consumption vary considerably in response to specific enzyme-catalyzed nitrogen imbalances, but the mechanisms are not yet completely understood. Studying the regulation of related enzymes’ activity is essential to minimize N2O emissions during wastewater treatment. This paper aims to review the poorly understood related enzymes that most commonly involved in producing and consuming N2O in terms of their nature, structure and catalytic mechanisms. The pathways of N2O emission during wastewater treatment are briefly introduced. The key environmental factors influencing N2O emission through regulatory enzymes are summarized and the enzyme-based mechanisms are revealed. Several enzymebased techniques for mitigating N2O emissions directly or indirectly are proposed. Finally, areas for further research on N2O release during wastewater treatment are discussed.
  相似文献   

8.
Fe-BEA catalysts are active for the NH3-SCR of NO. For industrial application, a binder should be added to the Fe-BEA catalysts to make them tightly adhere to the monoliths. The addition of alumina and zirconia as binders to the Fe-BEA led to a different effect on NO conversion. The catalytic activity of the mixed samples was evaluated by the temperature programmed procedure in a flow-reactor system, and the mechanism was analyzed via SEM, BET, XRD and XPS. It was found that larger iron particles were formed by the migration of parent iron particles in the Fe-BEA catalyst with alumina. This led to the increase of Fe3+ magnitude and iron cluster, enhancing the abilities of NO oxidation and storage. Accordingly, the SCR activity increased slightly in low temperature but decreased sharply in high temperature. For the Fe-BEA with zirconia sample, NO oxidation and storage abilities decreased due to the less iron clusters. The increase of Fe3+ magnitude resulted in higher catalytic oxidation ability, which gave rise to little change in the SCR activity compared with the Fe-BEA.
  相似文献   

9.
In this research, supercritical carbon dioxide extraction (SFE) showed better extraction effect when compared with Solid- liquid extraction (SLE), Soxhlet extraction (SE) and Ultrasonic extraction (UE), not only in the rate but also the time. The comparison among these three extraction modifiers, including acetone, ethanol and methanol demonstrated that ethanol was preferred to SFE due to its high extraction effect and low toxicology. In addition, parameter of SFE, influence of temperature and pressure were investigated, and the best extraction effect was achieved at the optima conditions, temperature of 40°C and the pressure of 35 MPa. Thus, SFE is a highly effective method for flavonols extraction, requiring minimum energy and producing non-toxic byproduct. SFE-GC system is applied for the evaluation on flavonols that plays a key role in plant resistance to heavy metal, with its content and synthetase gene expression significantly increasing in plant when threatened by heavy metal. Besides, results indicated that flavonols can improve plant resistance to oxidative stress by quenching the redundant ROS in matrix.
  相似文献   

10.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30°C and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
  相似文献   

11.
The development of cost-effective and highly efficient anode materials for extracellular electron uptake is important to improve the electricity generation of bioelectrochemical systems. An effective approach to mitigate harmful algal bloom (HAB) is mechanical harvesting of algal biomass, thus subsequent processing for the collected algal biomass is desired. In this study, a low-cost biochar derived from algal biomass via pyrolysis was utilized as an anode material for efficient electron uptake. Electrochemical properties of the algal biochar and graphite plate electrodes were characterized in a bioelectrochemical system (BES). Compared with graphite plate electrode, the algal biochar electrode could effectively utilize both indirect and direct electron transfer pathways for current production, and showed stronger electrochemical response and better adsorption of redox mediators. The maximum current density of algal biochar anode was about 4.1 times higher than graphite plate anode in BES. This work provides an application potential for collected HAB to develop a cost-effective anode material for efficient extracellular electron uptake in BES and to achieve waste resource utilization.
  相似文献   

12.
Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.
  相似文献   

13.
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
  相似文献   

14.
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
  相似文献   

15.
In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L–1 FeVO4 and 15 mmol·L–1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min–1), pH 7.0 (k = 0.0438 min–1), and pH 7.7 (k = 0.0434 min–1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.
  相似文献   

16.
In this paper, we present a three-step methodological framework, including location identification, bias modification, and out-of-sample validation, so as to promote human mobility analysis with social media data. More specifically, we propose ways of identifying personal activity-specific places and commuting patterns in Beijing, China, based on Weibo (China’s Twitter) check-in records, as well as modifying sample bias of check-in data with population synthesis technique. An independent citywide travel logistic survey is used as the benchmark for validating the results. Obvious differences are discerned from Weibo users’ and survey respondents’ activity-mobility patterns, while there is a large variation of population representativeness between data from the two sources. After bias modification, the similarity coefficient between commuting distance distributions of Weibo data and survey observations increases substantially from 23% to 63%. Synthetic data proves to be a satisfactory cost-effective alternative source of mobility information. The proposed framework can inform many applications related to human mobility, ranging from transportation, through urban planning to transport emission modeling.
  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
  相似文献   

18.
Various pretreatments methods including sonication and grinding were performed on red seaweed Gelidium amansii for the subsequent extraction of agarose. The agarose products are usually extracted from agar powder products from seaweeds. In this study, the agarose was extracted using a direct polyethylene glycol (PEG) method without the need to first process the agar from seaweed. The agar extract was frozen then thawed and mixed directly with PEG solution to precipitate the agarose. The quality of agarose obtained was evaluated through physico-chemical properties analysis which includes spectral technique (FTIR), melting and boiling point, gel strength and sulfate content. These properties were compared with a non-pretreated sample and it was found that the addition of pretreatment steps improved the quality of agarose but gave a slightly lower yield. The gel strength of pretreated samples was much higher and the sulfate content was lower compared to non-pretreated samples. The best pretreatment method was sonication which gave gel strength of 742 g cm-2 and sulfate content of 0.63%. The extraction of agarose can be further improved with the use of different neutralizing agents. Pretreating the seaweed shows potential in improving the quality of agarose from seaweed and can be applied for future extraction of the agarose.
  相似文献   

19.
First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.
  相似文献   

20.
Biofilm is an effective simultaneous denitrification and in situ sludge reduction system, and the characteristics of different biofilm carrier have important implications for biofilm growth and in situ sludge reduction. In this study, the performance and mechanism of in situ sludge reduction were compared between FSC-SBBR and SC-SBBR with constructed by composite floating spherical carriers (FSC) and multi-faceted polyethylene suspension carriers (SC), respectively. The variation of EPS concentration indicated that the biofilm formation of FSC was faster than SC. Compared with SCSBBR, the FSC-SBBR yielded 0.16 g MLSS/g COD, almost 27.27% less sludge. The average removal rates of COD and NH4+-N were 93.39% and 96.66%, respectively, which were 5.21% and 1.43% higher than the average removal rate of SC-SBBR. Investigation of the mechanisms of sludge reduction revealed that, energy uncoupling metabolism and sludge decay were the main factors for sludge reduction inducing 43.13% and 49.65% less sludge, respectively, in FSC-SBBR. EEM fluorescence spectroscopy and SUVA analysis showed that the hydrolytic capacity of biofilm attached in FSC was stronger than those of SC, and the hydrolysis of EPS released more DOM contributed to lysis-cryptic growth metabolism. In additional, Bacteroidetes and Mizugakiibacter associated with sludge reduction were the dominant phylum and genus in FCS-SBBR. Thus, the effect of simultaneous in situ sludge reduction and pollutant removal in FSC-SBBR was better.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号