首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
  相似文献   

2.
Bioelectrochemical systems (BES) have been extensively studied for resource recovery from wastewater. By taking advantage of interactions between microorganisms and electrodes, BES can accomplish wastewater treatment while simultaneously recovering various resources including nutrients, energy and water (“NEW”). Despite much progress in laboratory studies, BES have not been advanced to practical applications. This paper aims to provide some subjective opinions and a concise discussion of several key challenges in BES-based resource recovery and help identify the potential application niches that may guide further technological development. In addition to further increasing recovery efficiency, it is also important to have more focus on the applications of the recovered resources such as how to use the harvested electricity and gaseous energy and how to separate the recovered nutrients in an energy-efficient way. A change in mindset for energy performance of BES is necessary to understand overall energy production and consumption. Scaling up BES can go through laboratory scale, transitional scale, and then pilot scale. Using functions as driving forces for BES research and development will better guide the investment of efforts.
  相似文献   

3.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   

4.
Porous carbon material facilitates the reaction SO2 + O2 + H2O → H2SO4 in coal-burned flue gas for sulfur resources recovery at mild conditions. It draws a long-term mystery on its heterogeneous catalysis due to the complicated synergic effect between its microstructure and chemical components. To decouple the effects of geometric structure from chemical components, classical molecular dynamics method was used to investigate the static and dynamic characteristics of the reactants (H2O, SO2 and O2) in the confined space truncated by double-layer graphene (DLG). Strong adsorption of SO2 and O2 by the DLG was observed, which results in the filling of the solute molecules into the interior of the DLG and the depletion of H2O. This effect mainly results from the different affinity of the DLG to the species and can be tuned by the separation of the two graphene layers. Such dimension dependence of the static and dynamic properties like distribution profile, molecular cluster, hydrogen bond and diffusion coefficient were also studied. The conclusions drawn in this work could be helpful to the further understanding of the underlying reaction mechanism of desulfurization process in porous carbon materials and other applications of carbon-based catalysts.
  相似文献   

5.
Heterogeneous photocatalysis has long been considered to be one of the most promising approaches to tackling the myriad environmental issues. However, there are still many challenges for designing efficient and cost-effective photocatalysts and photocatalytic degradation systems for application in practical environmental remediation. In this review, we first systematically introduced the fundamental principles on the photocatalytic pollutant degradation. Then, the important considerations in the design of photocatalytic degradation systems are carefully addressed, including charge carrier dynamics, catalytic selectivity, photocatalyst stability, pollutant adsorption and photodegradation kinetics. Especially, the underlying mechanisms are thoroughly reviewed, including investigation of oxygen reduction properties and identification of reactive oxygen species and key intermediates. This review in environmental photocatalysis may inspire exciting new directions and methods for designing, fabricating and evaluating photocatalytic degradation systems for better environmental remediation and possibly other relevant fields, such as photocatalytic disinfection, water oxidation, and selective organic transformations.
  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
  相似文献   

7.
Pharmaceutically active compounds in wastewater released from human consumption have received considerable attention because of their possible risks for aquatic environments. In this study, the occurrence and removal of 10 pharmaceuticals in three municipal wastewater treatment plants in southern China were investigated and the environmental risks they posed were assessed. Nifedipine, atenolol, metoprolol, valsartan and pravastatin were detected in the influent wastewater. The highest average concentration in the influents was observed for metoprolol (164.6 ng/L), followed by valsartan (120.3 ng/L) in August, while median concentrations were higher in November than in August. The total average daily mass loadings of the pharmaceuticals in the three plants were 289.52 mg/d/person, 430.46 mg/d/person and 368.67 mg/d/person, respectively. Elimination in the treatment plants studied was incomplete, with metoprolol levels increasing during biological treatment. Biological treatment was the most effective step for PhACs removal in all of the plants studied. Moreover, the removal of PhACs was observed with higher efficiencies in August than in November. The WWTP equipped with an Unitank process exhibited similar removals of most PhACs as other WWTPs equipped with an anoxic/oxic (A/O) process or various anaerobic-anoxic-oxic (A2/O) process. The environmental risk assessment concluded that all of the single PhAC in the effluents displayed a low risk (RQ<0.1) to the aquatic environments.
  相似文献   

8.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

9.
A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.
  相似文献   

10.
In this research, supercritical carbon dioxide extraction (SFE) showed better extraction effect when compared with Solid- liquid extraction (SLE), Soxhlet extraction (SE) and Ultrasonic extraction (UE), not only in the rate but also the time. The comparison among these three extraction modifiers, including acetone, ethanol and methanol demonstrated that ethanol was preferred to SFE due to its high extraction effect and low toxicology. In addition, parameter of SFE, influence of temperature and pressure were investigated, and the best extraction effect was achieved at the optima conditions, temperature of 40°C and the pressure of 35 MPa. Thus, SFE is a highly effective method for flavonols extraction, requiring minimum energy and producing non-toxic byproduct. SFE-GC system is applied for the evaluation on flavonols that plays a key role in plant resistance to heavy metal, with its content and synthetase gene expression significantly increasing in plant when threatened by heavy metal. Besides, results indicated that flavonols can improve plant resistance to oxidative stress by quenching the redundant ROS in matrix.
  相似文献   

11.
For biological nitrogen (N) removal from wastewater, a sufficient organic carbon source is requested for denitrification. However, the organic carbon/nitrogen ratio in municipal wastewater is becoming lower in recent years, which increases the demand for the addition of external organic carbon, e.g. methanol, in wastewater treatment. The volatile fatty acids (VFAs) produced by acidogenic fermentation of sewage sludge can be an attractive alternative for methanol. Chemically enhanced primary sedimentation (CEPS) is an effective process that applies chemical coagulants to enhance the removal of organic pollutants and phosphorus from wastewater by sedimentation. In terms of the chemical and biological characteristics, the CEPS sludge is considerably different from the conventional primary and secondary sludge. In the present study, FeCl3 and PACl (polyaluminum chloride) were used as the coagulants for CEPS treatment of raw sewage. The derived CEPS sludge (Fe-sludge and Al-sludge) was then processed with mesophilic acidogenic fermentation to hydrolyse the solid organics and produce VFAs for organic carbon recovery, and the sludge acidogenesis efficiency was compared with that of the conventional primary sludge and secondary sludge. The results showed that the Fe-sludge exhibited the highest hydrolysis and acidogenesis efficiency, while the Al-sludge and secondary sludge had lower hydrolysis efficiency than that of primary sludge. Utilizing the Fe-sludge fermentation liquid as the carbon source for denitrification, more than 99% of nitrate removal was achieved in the main-stream wastewater treatment without any external carbon addition, instead of 35% obtained from the conventional process of primary sedimentation followed by the oxic/anoxic (O/A) treatment.
  相似文献   

12.
The development of cost-effective and highly efficient anode materials for extracellular electron uptake is important to improve the electricity generation of bioelectrochemical systems. An effective approach to mitigate harmful algal bloom (HAB) is mechanical harvesting of algal biomass, thus subsequent processing for the collected algal biomass is desired. In this study, a low-cost biochar derived from algal biomass via pyrolysis was utilized as an anode material for efficient electron uptake. Electrochemical properties of the algal biochar and graphite plate electrodes were characterized in a bioelectrochemical system (BES). Compared with graphite plate electrode, the algal biochar electrode could effectively utilize both indirect and direct electron transfer pathways for current production, and showed stronger electrochemical response and better adsorption of redox mediators. The maximum current density of algal biochar anode was about 4.1 times higher than graphite plate anode in BES. This work provides an application potential for collected HAB to develop a cost-effective anode material for efficient extracellular electron uptake in BES and to achieve waste resource utilization.
  相似文献   

13.
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
  相似文献   

14.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30°C and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
  相似文献   

15.
A laboratory scale up-flow anaerobic sludge bed (UASB) bioreactor fed with synthetic wastewater was operated with simultaneous methanogenesis and denitrification (SMD) granules for 235 days with a gradient decrease of C/N. Molecular cloning, qRT-PCR and T-RFLP were applied to study the methanogenic community structures in SMD granules and their changes in response to changing influent C/N. The results indicate that when C/N was 20:1, the methane production rate was fastest, and Methanosaetaceae and Methanobacteriaceae were the primary methanogens within the Archaea. The richness and evenness of methanogenic bacteria was best with the highest T-RFLP diversity index of 1.627 in the six granular sludge samples. When C/N was reduced from 20:1 to 5:1, the methanogenic activity of SMD granules decreased gradually, and the relative quantities of methanogens decreased from 36.5% to 10.9%. The abundance of Methanosaetaceae in Archaea increased from 64.5% to 84.2%, while that of Methanobacteriaceae decreased from 18.6% to 11.8%, and the richness and evenness of methanogens decreased along with the T-RFLP diversity index to 1.155, suggesting that the community structure reflected the succession to an unstable condition represented by high nitrate concentrations.
  相似文献   

16.
In this paper, we present a three-step methodological framework, including location identification, bias modification, and out-of-sample validation, so as to promote human mobility analysis with social media data. More specifically, we propose ways of identifying personal activity-specific places and commuting patterns in Beijing, China, based on Weibo (China’s Twitter) check-in records, as well as modifying sample bias of check-in data with population synthesis technique. An independent citywide travel logistic survey is used as the benchmark for validating the results. Obvious differences are discerned from Weibo users’ and survey respondents’ activity-mobility patterns, while there is a large variation of population representativeness between data from the two sources. After bias modification, the similarity coefficient between commuting distance distributions of Weibo data and survey observations increases substantially from 23% to 63%. Synthetic data proves to be a satisfactory cost-effective alternative source of mobility information. The proposed framework can inform many applications related to human mobility, ranging from transportation, through urban planning to transport emission modeling.
  相似文献   

17.
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.
  相似文献   

18.
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
  相似文献   

19.
First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.
  相似文献   

20.
Fe-BEA catalysts are active for the NH3-SCR of NO. For industrial application, a binder should be added to the Fe-BEA catalysts to make them tightly adhere to the monoliths. The addition of alumina and zirconia as binders to the Fe-BEA led to a different effect on NO conversion. The catalytic activity of the mixed samples was evaluated by the temperature programmed procedure in a flow-reactor system, and the mechanism was analyzed via SEM, BET, XRD and XPS. It was found that larger iron particles were formed by the migration of parent iron particles in the Fe-BEA catalyst with alumina. This led to the increase of Fe3+ magnitude and iron cluster, enhancing the abilities of NO oxidation and storage. Accordingly, the SCR activity increased slightly in low temperature but decreased sharply in high temperature. For the Fe-BEA with zirconia sample, NO oxidation and storage abilities decreased due to the less iron clusters. The increase of Fe3+ magnitude resulted in higher catalytic oxidation ability, which gave rise to little change in the SCR activity compared with the Fe-BEA.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号